Open centralizers and the continuity of group representations
HTML articles powered by AMS MathViewer
- by Claude Schochet and Bertram Schreiber
- Proc. Amer. Math. Soc. 82 (1981), 99-104
- DOI: https://doi.org/10.1090/S0002-9939-1981-0603609-3
- PDF | Request permission
Abstract:
Let $G$ be a locally compact group, $\pi :G \to \mathfrak {L}({L^2}(G))$ the right regular representation of $G$, and ${G^c} = \{ x \in G:$: the function $g \rightsquigarrow \pi (gx{g^{ - 1}})$ is norm continuous}. This note is devoted to the study of ${G^c}$. In particular, the compactly generated groups for which $G = {G^c}$ are characterized.References
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- Alessandro Figà-Talamanca, Translation invariant operators in $L^{p}$, Duke Math. J. 32 (1965), 495–501. MR 181869
- Alessandro Figà-Talamanca and G. I. Gaudry, Density and representation theorems for multipliers of type $(p,\,q)$, J. Austral. Math. Soc. 7 (1967), 1–6. MR 0209770
- Irving Kaplansky, Groups with representations of bounded degree, Canad. J. Math. 1 (1949), 105–112. MR 28317, DOI 10.4153/cjm-1949-011-9
- Richard Loebl and Claude Schochet, Covariant representations on the Calkin algebra. I, Duke Math. J. 45 (1978), no. 4, 721–734. MR 518103
- Calvin C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401–410. MR 302817, DOI 10.1090/S0002-9947-1972-0302817-8
- Gopal Prasad, Strong approximation for semi-simple groups over function fields, Ann. of Math. (2) 105 (1977), no. 3, 553–572. MR 444571, DOI 10.2307/1970924
- Claude Schochet, Covariant representations on the Calkin algebra. II, Duke Math. J. 47 (1980), no. 2, 451–461. MR 575907
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 99-104
- MSC: Primary 22D05
- DOI: https://doi.org/10.1090/S0002-9939-1981-0603609-3
- MathSciNet review: 603609