A CONTINUOUS VERSION OF THE BORSUK-ULAM THEOREM

JAN JAWOROWSKI

Abstract. Let $p: E \to B$ be an n-sphere bundle, $q: V \to B$ be an R^r-bundle and $f: E \to V$ be a fibre preserving map over a paracompact space B. Let $\tilde{p}: \tilde{E} \to B$ be the projectivized bundle obtained from p by the antipodal identification and let \tilde{A}_f be the subset of \tilde{E} consisting of pairs $(e, -e)$ such that $fe = f(-e)$. If the cohomology dimension d of B is finite then the map $(\tilde{p}|\tilde{A}_f)^*: H^d(B; Z_2) \to H^d(\tilde{A}_f; Z_2)$ is injective for a continuous cohomology theory H^*. Moreover, if the jth Stiefel-Whitney class of q is zero for $1 \leq j \leq r$ then $(\tilde{p}|\tilde{A}_f)^*$ is injective in degrees $i > d - r$. If all the Stiefel-Whitney classes of q are zero then $(\tilde{p}|\tilde{A}_f)^*$ is injective in every degree.

Introduction. The Borsuk-Ulam theorem [1] says that if $f: S^n \to R^n$ is a map then the set A_f of points $x \in S^n$ such that $fx = f(-x)$ is nonempty. Because A_f is symmetric with respect to the antipodal involution, it is more convenient to consider the subset \tilde{A}_f of the real projective n-space P^n corresponding to A_f under the antipodal identification.

If a single S^n and an R^n are replaced by continuous families $E \to B$ with fibre S^n and $V \to B$ with fibre R^n over a space B, and if f is replaced by a fibre preserving map $f: E \to V$, one may expect the existence of a cross-section of sorts in the set A_f of the real projective n-space P^n corresponding to A_f under the antipodal identification.

If a single S^n and an R^n are replaced by continuous families $E \to B$ with fibre S^n and $V \to B$ with fibre R^n over a space B, and if f is replaced by a fibre preserving map $f: E \to V$, one may expect the existence of a cross-section of sorts in the set A_f of the real projective n-space P^n corresponding to A_f under the antipodal identification.

A result in this direction in the case when E is the product bundle $E = S^k \times S^n$ and V is a single R^n follows from a theorem proved by J. E. Connett [2]. In this note we are going to consider this question for fibre preserving maps $E \to V$ where E is an n-sphere bundle and V is an n-dimensional real vector space bundle over a paracompact space B. If B is a point, then the theorem proved below reduces to the classical Borsuk-Ulam theorem.

Main result. If X is a space with an involution $t: X \to X$, we denote by \overline{X} the orbit space X/t of t. If $p: E \to B$ is a fibre bundle with a fibre preserving involution $t: E \to E$, we write $\overline{p}: \overline{E} \to B$ for the bundle $p/t: E/t \to B$; its fibre is \overline{X}, where X is the fibre of p. Thus if $p: E \to B$ is an n-sphere bundle, then $\overline{p}: \overline{E} \to B$ is the associated real projective n-space bundle.
If E is any space with an involution $t: E \to E$ and $f: E \to V$ is a map of E into some space V, let A_f denote the set of points $e \in E$ such that $fe = fte$ and let \tilde{A}_f be the image of A_f in \tilde{E}.

We are going to use the Alexander-Spanier cohomology theory $H^* \mod 2$. The coefficient group \mathbb{Z}_2 will be suppressed from the notation. If Z is a space, A is a subset of Z and $i: A \to Z$ is the inclusion map, then the image of a cohomology class $z \in H^*(Z)$ under the induced homomorphism $i^*: H^*(Z) \to H^*(A)$ will sometimes be denoted by $z|_A$ and called the restriction of z to A. We denote by $\dim Z$ the covering dimension of Z and by $d(Z)$ its cohomology dimension, that is, $d(Z) = \text{Sup}\{m: H^m(Z) \neq 0\}$. We have $d(Z) < \dim Z$ if Z is paracompact. If $q: V \to B$ is a vector space bundle over B then the jth Stiefel-Whitney class of q is denoted by $w_j(q)$.

We will assume throughout the paper that B is a paracompact space.

Theorem. Let $p: E \to B$ be an n-sphere bundle with the antipodal involution, let $q: V \to B$ be an \mathbb{R}^n-bundle and let $f: E \to V$ be a fibre preserving map over B. If $d(B) < d$ and $w_j(q) = 0$ for $1 < j < r$ then the map $(p|_{\tilde{A}_f})^*: H^i(B) \to H^i(\tilde{A}_f)$ is injective for $i > d - r$.

In the following corollaries we specify particular cases of this theorem to illustrate its significance.

Corollary 1. If $f: E \to V$ is a fibre preserving map of an n-sphere bundle $p: E \to B$ with the antipodal involution into an \mathbb{R}^n-bundle $q: V \to B$ and if $d(B) = d < \infty$, then the map $(p|_{\tilde{A}_f})^*: H^d(B) \to H^d(\tilde{A}_f)$ is injective.

Corollary 2. If $f: E \to V$ is a fibre preserving map of an n-sphere bundle $p: E \to B$ with the antipodal involution into an \mathbb{R}^n-bundle $q: V \to B$ and if all the Stiefel-Whitney classes of q are zero then the map $(p|_{\tilde{A}_f})^*: H^i(B) \to H^i(\tilde{A}_f)$ is injective for every i.

Corollary 3. If B is closed manifold and $f: E \to V$ is a fibre preserving map of an n-sphere bundle $p: E \to B$ with the antipodal involution into an \mathbb{R}^n-bundle $q: V \to B$ then $\dim A_f = \dim \tilde{A}_f > \dim B$.

In Corollary 3, we have $d = d(B) = \dim B$ and $H^d(B) \neq 0$. On the other hand, $\dim \tilde{A}_f = \dim A_f$ since the orbit map $A_f \to \tilde{A}_f$ is a double covering.

Proof of the theorem. If X is any space with a free involution $t: X \to X$, let $u(X)$ denote its characteristic class. It is an element $u(X) \in H^1(X)$, where X is, as usual, the orbit space of t. In other words, $u(X)$ is the Stiefel-Whitney class of the double covering $X \to \tilde{X}$. The class $u(S^n)$ of the antipodal involution generates the polynomial ring $H^*(P^n)$ of height n.

Let $b \in B$. Then the fibre of \tilde{p} over b is $\tilde{p}^{-1}b = P^n$ and the polynomial ring $H^*(\tilde{p}^{-1}b)$ is generated by $u(p^{-1}b) \in H^1(\tilde{p}^{-1}b)$. The fibre inclusion $p^{-1}b \to E$ is an equivariant map. By the naturality of u, the restriction of $u(E) \in H^1(\tilde{E})$ to the fibre $\tilde{p}^{-1}b$ is equal to $u(p^{-1}b)$. By the Leray-Dold-Hirsch theorem [3, p. 229], $H^*(\tilde{E})$ is an $H^*(B)$-module freely generated by the powers $1, u(E), \ldots, u^n(E)$, with
\[H^*(B) \text{ acting on } H^*(\tilde{E}) \text{ via the cup product. In other words, the map } \]
\[\bigoplus_{i=0}^{n} H^{m+i}(B) \to H^{m+n}(\tilde{E}), \]
\[(x_m, x_{m+1}, \ldots, x_{m+n}) \mapsto \sum_{i=0}^{n} (\tilde{p}^* x_{m+i}) \cup u^{n-i}(E) \]
\[\text{is an isomorphism. This map restricted to } H^m(B) \text{ gives a monomorphism } \]
\[\iota: H^m(B) \to H^{m+n}(\tilde{E}), \quad x \mapsto (\tilde{p}^* x) \cup u^n(E). \]

Let 0 be the zero section in \(V \) and \(V_0 = V - 0 \). Then the antipodal map is a free involution in \(V_0 \) and the fibre of the bundle \(q_0 = q|V_0: V_0 \to B \) is \(\mathbb{R}^n = \mathbb{R}^n - (0) \). The bundle \(q_0 \) is fibre homotopy equivalent to its \(S^{n-1} \)-bundle and hence \(H^*(\tilde{V}_0) \) is an \(H^*(B) \)-module freely generated by 1, \(u(V_0), \ldots, u^{n-1}(V_0) \). Moreover, \(u^n(V_0) = \sum_{j=1}^{n} (\tilde{g}_0^* w_j) \cup u^{n-j}(V_0) \), where the coefficient \(w_j = w_j(q) \) is the \(j \)th Stiefel-Whitney class of \(q \) [3, p. 232].

Let \(g: E \to V \) be defined by \(ge = fe - f(-e) \). Then \(g \) is equivariant, \(g(-e) = -ge \), \(A_f = A_g = g^{-1}0 \) and the restriction of \(g \) to \(E_0 = E - A_f \) defines an equivariant map \(g_0: E_0 \to V_0 \). By the naturality of \(u \), we have \(\tilde{g}_0^* u(V_0) = u(E_0) \), where \(\tilde{g}_0: \tilde{E}_0 \to \tilde{V}_0 \) is the map of the orbit bundles induced by \(g_0 \) and \(u(E_0) = u(E)|\tilde{E}_0 \). It follows that

\[u^n(E)|\tilde{E}_0 = \tilde{g}_0^* u^n(V_0) = \sum_{j=1}^{n} \left[(\tilde{p}^* w_j)|\tilde{E}_0 \right] \cup \left[u^{n-j}(E)|\tilde{E}_0 \right] \]
\[= \left[\sum_{j=1}^{n} \left(\tilde{p}^* w_j \right) \cup u^{n-j}(E) \right]|\tilde{E}_0. \]

To show that \((\tilde{p}^* A_f)^* \) is a monomorphism in the degrees specified in the theorem, suppose that \(x \in H^i(B) \) with \(i > d - r \) and \((\tilde{p}^* A_f)^* x = 0 \), i.e., \((\tilde{p}^* x)|A_f = 0 \). By the continuity of \(H^* \), there is a neighborhood \(U \) of \(A_f \) in \(E \) such that \((\tilde{p}^* x)|(\bar{U}) = 0 \) (\(\bar{U} \) denotes, as usual, the image of \(U \) in \(\bar{E} \)). Let \(e: \bar{E} \to (\bar{E}, \bar{U}) \) and \(k: E \to (E, \bar{E}_0) \) be the inclusion maps. Since \((\tilde{p}^* x)|(\bar{U}) = 0 \), then \(\tilde{p}^* x = e^* y \), for some \(y \in H^i(\bar{E}, \bar{U}) \). Let \(v = u^n(E) - \sum_{j=1}^{n} (\tilde{p}^* w_j) \cup u^{n-j}(E) \). Then \(v|\bar{E}_0 = 0 \); hence \(v = k^* z \), for some \(z \in H^n(\bar{E}, \bar{E}_0) \). Since \((\bar{E}; \bar{U}, \bar{E}_0) \) is an excisive triad, \(e^* y \cup k^* z = y \cup z = 0 \); hence \(0 = (\tilde{p}^* x) \cup u^n(E) - (\tilde{p}^* x) \cup [\sum_{j=1}^{n} (\tilde{p}^* w_j) \cup u^{n-j}(E)] \). Therefore

\[(\tilde{p}^* x) \cup u^n(E) = \sum_{j=1}^{n} \tilde{p}^* (x \cup w_j) \cup u^{n-j}(E). \]

Now if \(j < r \) then \(w_j = 0 \) by the assumption. If \(j > r \) then \(\deg(x \cup w_j) = i + j > i + r > d > d(B) \) since \(i > d - r \). Therefore all the coefficients in this polynomial are zero. Hence \((\tilde{p}^* x) \cup u^n(E) = 0 \). But \((\tilde{p}^* x) \cup u^n(E) = \iota x \) and \(\iota \) is a monomorphism. Therefore \(x = 0 \) and thus \((\tilde{p}^* A_f)^* \) is a monomorphism. Q.E.D.

References

Forschungsinstitut für Mathematik, ETH Zürich, Zurich, Switzerland

Department of Mathematics, Indiana University, Bloomington, Indiana 47401 (Current address)