A CONTINUOUS VERSION OF THE BORSUK-ULAM THEOREM

JAN JAWOROWSKI

Abstract. Let \(p: E \rightarrow B \) be an \(n \)-sphere bundle, \(q: V \rightarrow B \) be an \(\mathbb{R}^n \)-bundle and \(f: E \rightarrow V \) be a fibre preserving map over a paracompact space \(B \). Let \(\tilde{p}: \tilde{E} \rightarrow B \) be the projectivized bundle obtained from \(p \) by the antipodal identification and let \(\tilde{A}_f \) be the subset of \(\tilde{E} \) consisting of pairs \((e, -e) \) such that \(f(e) = f(-e) \). If the cohomology dimension \(d \) of \(B \) is finite then the map \((\tilde{p}|_{\tilde{A}_f})^*: H^d(B; \mathbb{Z}) \rightarrow H^d(\tilde{A}_f; \mathbb{Z}) \) is injective for a continuous cohomology theory \(H^* \). Moreover, if the \(j \)-th Stiefel-Whitney class of \(q \) is zero for \(1 < j < r \) then \((\tilde{p}|_{\tilde{A}_f})^* \) is injective in degrees \(i > d - r \). If all the Stiefel-Whitney classes of \(q \) are zero then \((\tilde{p}|_{\tilde{A}_f})^* \) is injective in every degree.

Introduction. The Borsuk-Ulam theorem [1] says that if \(f: S^n \rightarrow \mathbb{R}^n \) is a map then the set \(A_f \) of points \(x \in S^n \) such that \(f(x) = f(-x) \) is nonempty. Because \(A_f \) is symmetric with respect to the antipodal involution, it is more convenient to consider the subset \(\tilde{A}_f \) of the real projective \(n \)-space \(P^n \) corresponding to \(A_f \) under the antipodal identification.

If a single \(S^n \) and an \(\mathbb{R}^n \) are replaced by continuous families \(E \rightarrow B \) with fibre \(S^n \) and \(V \rightarrow B \) with fibre \(\mathbb{R}^n \) over a space \(B \), and if \(f \) is replaced by a fibre preserving map \(f: E \rightarrow V \), one may expect the existence of a cross-section of sorts in the set \(A_f \) of pairs \((e, -e) \) such that \(e \in E \) and \(fe = f(-e) \), at least on an algebraic level.

A result in this direction in the case when \(E \) is the product bundle \(E = S^k \times S^n \) and \(V \) is a single \(\mathbb{R}^n \) follows from a theorem proved by J. E. Connett [2]. In this note we are going to consider this question for fibre preserving maps \(E \rightarrow V \) where \(E \) is an \(n \)-sphere bundle and \(V \) is an \(n \)-dimensional real vector space bundle over a paracompact space \(B \). If \(B \) is a point, then the theorem proved below reduces to the classical Borsuk-Ulam theorem.

Main result. If \(X \) is a space with an involution \(t: X \rightarrow X \), we denote by \(\overline{X} \) the orbit space \(X/t \) of \(t \). If \(p: E \rightarrow B \) is a fibre bundle with a fibre preserving involution \(t: E \rightarrow E \), we write \(\overline{p}: \overline{E} \rightarrow B \) for the bundle \(p/t: E/t \rightarrow B \); its fibre is \(\overline{X} \), where \(X \) is the fibre of \(p \). Thus if \(p: E \rightarrow B \) is an \(n \)-sphere bundle, then \(\overline{p}: \overline{E} \rightarrow B \) is the associated real projective \(n \)-space bundle.
If E is any space with an involution $t: E \to E$ and $f: E \to V$ is a map of E into some space V, let A_f denote the set of points $e \in E$ such that $fe = fte$ and let \bar{A}_f be the image of A_f in \overline{E}.

We are going to use the Alexander-Spanier cohomology theory $H^\ast \text{mod} 2$. The coefficient group \mathbb{Z}_2 will be suppressed from the notation. If Z is a space, A is a subset of Z and $i: A \to Z$ is the inclusion map, then the image of a cohomology class $z \in H^\ast(Z)$ under the induced homomorphism $i^*: H^\ast(Z) \to H^\ast(A)$ will sometimes be denoted by $z|A$ and called the restriction of z to A. We denote by $\dim Z$ the covering dimension of Z and by $d(Z)$ its cohomology dimension, that is, $d(Z) = \sup\{m: H^m(Z) \neq 0\}$. We have $d(Z) < \dim Z$ if Z is paracompact. If $q: V \to B$ is a vector space bundle over B then the jth Stiefel-Whitney class of q is denoted by $w_j(q)$.

We will assume throughout the paper that B is a paracompact space.

Theorem. Let $p: E \to B$ be an n-sphere bundle with the antipodal involution, let $q: V \to B$ be an \mathbb{R}^n-bundle and let $f: E \to V$ be a fibre preserving map over B. If $d(B) < d$ and $w_j(q) = 0$ for $1 \leq j \leq r$ then the map $(\bar{p}\bar{A}_f)^*: H^i(B) \to H^i(\bar{A}_f)$ is injective for $i > d - r$.

In the following corollaries we specify particular cases of this theorem to illustrate its significance.

Corollary 1. If $f: E \to V$ is a fibre preserving map of an n-sphere bundle $p: E \to B$ with the antipodal involution into an \mathbb{R}^n-bundle $q: V \to B$ and if $d(B) = d < \infty$, then the map $(\bar{p}\bar{A}_f)^*: H^d(B) \to H^d(\bar{A}_f)$ is injective.

Corollary 2. If $f: E \to V$ is a fibre preserving map of an n-sphere bundle $p: E \to B$ with the antipodal involution into an \mathbb{R}^n-bundle $q: V \to B$ and if all the Stiefel-Whitney classes of q are zero then the map $(\bar{p}\bar{A}_f)^*: H^i(B) \to H^i(\bar{A}_f)$ is injective for every i.

Corollary 3. If B is closed manifold and $f: E \to V$ is a fibre preserving map of an n-sphere bundle $p: E \to B$ with the antipodal involution into an \mathbb{R}^n-bundle $q: V \to B$ then $\dim A_f = \dim \bar{A}_f > \dim B$.

In Corollary 3, we have $d = d(B) = \dim B$ and $H^d(B) \neq 0$. On the other hand, $\dim \bar{A}_f = \dim A_f$ since the orbit map $A_f \to \bar{A}_f$ is a double covering.

Proof of the theorem. If X is any space with a free involution $t: X \to X$, let $u(X)$ denote its characteristic class. It is an element $u(X) \in H^1(X)$, where \overline{X} is, as usual, the orbit space of t. In other words, $u(X)$ is the Stiefel-Whitney class of the double covering $X \to \overline{X}$. The class $u(S^n)$ of the antipodal involution generates the polynomial ring $H^*(\mathbb{P}^n)$ of height n.

Let $b \in B$. Then the fibre of \bar{p} over b is $\bar{p}^{-1}b = \mathbb{P}^n$ and the polynomial ring $H^*(\overline{p}^{-1}b)$ is generated by $u(p^{-1}b) \in H^1(\overline{p}^{-1}b)$. The fibre inclusion $p^{-1}b \to E$ is an equivariant map. By the naturality of u, the restriction of $u(E) \in H^1(\overline{E})$ to the fibre $\overline{p}^{-1}b$ is equal to $u(p^{-1}b)$. By the Leray-Dold-Hirsch theorem [3, p. 229], $H^*(\overline{E})$ is an $H^*(B)$-module freely generated by the powers 1, $u(E)$, ..., $u^n(E)$, with
$H^*(B)$ acting on $H^*(\overline{E})$ via the cup product. In other words, the map

$$\bigoplus_{i=0}^{n} H^{m+i}(B) \to H^{m+n}(\overline{E}),$$

$$(x_m, x_{m+1}, \ldots, x_{m+n}) \mapsto \sum_{i=0}^{n} (\overline{p}^*x_{m+i}) \cup u^{n-i}(E)$$

is an isomorphism. This map restricted to $H^m(B)$ gives a monomorphism

$$\iota: H^m(B) \to H^m(\overline{E}), \quad x \mapsto (\overline{p}^*x) \cup u^m(E).$$

Let 0 be the zero section in V and $V_0 = V - 0$. Then the antipodal map is a free involution in V_0 and the fibre of the bundle $q_0 = q|V_0: V_0 \to B$ is $\mathbb{R}^n = \mathbb{R}^n - (0)$. The bundle q_0 is fibre homotopy equivalent to its S^{n-1}-bundle and hence $H^*(\overline{V}_0)$ is an $H^*(B)$-module freely generated by $1, u(V_0), \ldots, u^{n-1}(V_0)$. Moreover, $u^n(V_0) = \sum_{j=1}^{n} (\overline{g}_0^*w_j) \cup u^{n-j}(V_0)$, where the coefficient $w_j = w_j(q)$ is the jth Stiefel-Whitney class of q [3, p. 232].

Let $g: E \to V$ be defined by $ge = fe - f(-e)$. Then g is equivariant, $g(-e) = -ge$, $A_f = A_g = g^{-1}0$ and the restriction of g to $E_0 = E - A_f$ defines an equivariant map $g_0: E_0 \to V_0$. By the naturality of u, we have $\overline{g}_0^*u(V_0) = u(E_0)$, where $\overline{g}_0: \overline{E}_0 \to \overline{V}_0$ is the map of the orbit bundles induced by g_0 and $u(E_0) = u(E)|\overline{E}_0$. It follows that

$$u^n(E)|\overline{E}_0 = \overline{g}_0^*u^n(V_0) = \sum_{j=1}^{n} \left[(\overline{p}^*w_j)|\overline{E}_0 \right] \cup \left[u^{n-j}(E)|\overline{E}_0 \right]$$

$$= \left[\sum_{j=1}^{n} (\overline{p}^*w_j) \cup u^{n-j}(E) \right]|\overline{E}_0.$$

To show that $(\overline{p}|A_f)^*$ is a monomorphism in the degrees specified in the theorem, suppose that $x \in H^i(B)$ with $i > d - r$ and $(\overline{p}|A_f)^*x = 0$, i.e., $(\overline{p}^*x)|A_f = 0$. By the continuity of H^*, there is a neighborhood U of A_f in E such that $(\overline{p}^*x)(U) = 0$ (\overline{U} denotes, as usual, the image of U in \overline{E}). Let $e: \overline{E} \to (\overline{E}, \overline{U})$ and $k: \overline{E} \to (E, \overline{E}_0)$ be the inclusion maps. Since $(\overline{p}^*x)(U) = 0$, then $\overline{p}^*x = e^*y$, for some $y \in H^i(E, \overline{U})$. Let $\nu = u^n(E) - \sum_{j=1}^{d+r-1} (\overline{p}^*w_j) \cup u^{n-j}(E)$. Then $\nu|\overline{E}_0 = 0$; hence $\nu = k^*z$, for some $z \in H^i(E, \overline{E}_0)$. Since $(\overline{E}; \overline{E}, \overline{E}_0)$ is an excisive triad, $e^*y \cup k^*z = y \cup z = 0$; hence $0 = (\overline{p}^*x) \cup u^n(E) - (\overline{p}^*x) \cup [\sum_{j=1}^{d+r-1} (\overline{p}^*w_j) \cup u^{n-j}(E)]$. Therefore

$$(\overline{p}^*x) \cup u^n(E) = \sum_{j=1}^{n} \overline{p}^*(x \cup w_j) \cup u^{n-j}(E).$$

Now if $j < r$ then $w_j = 0$ by the assumption. If $j > r$ then $\deg(x \cup w_j) = i + j > i + r > d > d(B)$ since $i > d - r$. Therefore all the coefficients in this polynomial are zero. Hence $(\overline{p}^*x) \cup u^n(E) = 0$. But $(\overline{p}^*x) \cup u^n(E) = ix$ and i is a monomorphism. Therefore $x = 0$ and thus $(\overline{p}|A_f)^*$ is a monomorphism. Q.E.D.

REFERENCES

FORSCHUNGSGESELLSCHAFT FÜR MATHEMATIK, ETH ZÜRICH, ZURICH, SWITZERLAND
DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47401 (Current address)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use