Inductively perfect maps and tri-quotient maps
HTML articles powered by AMS MathViewer
- by E. Michael
- Proc. Amer. Math. Soc. 82 (1981), 115-119
- DOI: https://doi.org/10.1090/S0002-9939-1981-0603613-5
- PDF | Request permission
Abstract:
It is proved that every tri-quotient map $f:X \to Y$ from a metric space $X$ onto a countable regular space $Y$, with each ${f^{ - 1}}(y)$ completely metrizable, is inductively perfect. It is not known to what extent all the hypotheses in this result are necessary, and that leads to some open questions regarding simple compactness properties of mappings between separable metric spaces.References
- F. Hausdorff, Erweiterung einer Homöomorphie, Fund. Math. 16 (1930), 353-360.
- E. Michael, A theorem on semi-continuous set-valued functions, Duke Math. J. 26 (1959), 647–651. MR 109343
- Ernest Michael, A theorem on pefect maps, Proc. Amer. Math. Soc. 28 (1971), 633–634. MR 275387, DOI 10.1090/S0002-9939-1971-0275387-5
- E. Michael, Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977), no. 3, 716–733. MR 467688
- E. Michael, Continuous selections and countable sets, Fund. Math. 111 (1981), no. 1, 1–10. MR 607914, DOI 10.4064/fm-111-1-1-10
- A. V. Ostrovskiĭ, $k$-covering mappings, Dokl. Akad. Nauk SSSR 227 (1976), no. 6, 1297–1300 (Russian). MR 0410643
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 115-119
- MSC: Primary 54C10; Secondary 54E35
- DOI: https://doi.org/10.1090/S0002-9939-1981-0603613-5
- MathSciNet review: 603613