(CA) closures of analytic groups
HTML articles powered by AMS MathViewer
- by David Zerling
- Proc. Amer. Math. Soc. 82 (1981), 133-138
- DOI: https://doi.org/10.1090/S0002-9939-1981-0603616-0
- PDF | Request permission
Abstract:
An analytic group $G$ is called $(CA)$ if the group of inner automorphisms of $G$ is closed in the Lie group of all bicontinuous automorphisms of $G$. We introduce the notion of a $(CA)$ closure for an analytic group and show that every analytic group possesses a $(CA)$ closure. The definition of uniqueness for such a $(CA)$ closure is developed and a sufficient condition for uniqueness is given. We also develop new sufficient conditions for a closed normal analytic subgroup of a $(CA)$ analytic group to be $(CA)$.References
- Morikuni Goto, Analytic subgroups of $\textrm {GL}(n,\,\textbf {R})$, Tohoku Math. J. (2) 25 (1973), 197β199. MR 322099, DOI 10.2748/tmj/1178241378
- Morikuni Goto, Immersions of Lie groups, J. Math. Soc. Japan 32 (1980), no.Β 4, 727β749. MR 589110, DOI 10.2969/jmsj/03240727 T. C. Stevens, Weakened topology for Lie groups, Ph. D. Thesis, Dept. of Math., Harvard Univ., Cambridge, Mass., 1978. W. T. van Est, Dense imbeddings of Lie groups, Indag. Math. 14 (1952), 255-274. β, Some theorems on $({\text {CA)}}$ Lie algebras. I, II, Indag. Math. 14 (1952), 546-568.
- David Zerling, Some theorems on $(\textrm {CA})$ analytic groups, Trans. Amer. Math. Soc. 205 (1975), 181β192. MR 364548, DOI 10.1090/S0002-9947-1975-0364548-0
- David Zerling, Dense subgroups of Lie groups. II, Trans. Amer. Math. Soc. 246 (1978), 419β428. MR 515548, DOI 10.1090/S0002-9947-1978-0515548-1
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 133-138
- MSC: Primary 22E05
- DOI: https://doi.org/10.1090/S0002-9939-1981-0603616-0
- MathSciNet review: 603616