Cut points of $X$ and the hyperspace of subcontinua $C(X)$
HTML articles powered by AMS MathViewer
- by Togo Nishiura and Choon Jai Rhee
- Proc. Amer. Math. Soc. 82 (1981), 149-154
- DOI: https://doi.org/10.1090/S0002-9939-1981-0603619-6
- PDF | Request permission
Abstract:
Let $X$ be a nondegenerate metric continuum and ${p_0}$ a point with $X = {X_1} \cup {X_2}$, $\{ {p_0}\} = {X_1} \cap {X_2}$, ${X_1}$ and ${X_2}$ continua. Denote by $C(X)$, $C({X_1})$ and $C({X_2})$ the hyperspaces of nonempty subcontinua of $X$, ${X_1}$ and ${X_2}$ respectively. Theorem. $C(X)$ is contractible if and only if $C({X_1})$ and $C({X_2})$ are contractible and either ${X_1}$ or ${X_2}$ is contractible im kleinen at ${p_0}$ (a modification of connected im kleinen at ${p_0}$). Theorem. Let ${X_1}$ and ${X_2}$ satisfy Kelley’s condition $K$. Then $C(X)$ is contractible when and only when either ${X_1}$ or ${X_2}$ is connected im kleinen at ${p_0}$. Examples are given.References
- John G. Hocking and Gail S. Young, Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR 0125557
- J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36. MR 6505, DOI 10.1090/S0002-9947-1942-0006505-8
- J. Krasinkiewicz, On the hyperspaces of hereditarily indecomposable continua, Fund. Math. 84 (1974), no. 3, 175–186. MR 350711, DOI 10.4064/fm-84-3-175-186
- Sam B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR 0500811
- C. J. Rhee, On dimension of hyperspace of a metric continuum, Bull. Soc. Roy. Sci. Liège 38 (1969), 602–604. MR 264620
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095, DOI 10.1090/coll/028
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 149-154
- MSC: Primary 54B20; Secondary 54E40, 54F20
- DOI: https://doi.org/10.1090/S0002-9939-1981-0603619-6
- MathSciNet review: 603619