A NOTE ON THE THOM ISOMORPHISM

MARK MAHOWALD AND NIGEL RAY

ABSTRACT. The generalized homology version of the Thom isomorphism theorem is exploited to give easy proofs of several recent theorems.

Let Ω be an H-space with homotopy inverse $x \rightarrow x^{-1}$, and let $f : \Omega \rightarrow BF$ classify a stable spherical fibration over Ω. The following result is proved in [2].

Theorem 1. If f is an H-map, then the Thom spectrum $T(f)$ is a ring spectrum, and there is a homotopy equivalence $\alpha : T(f) \land \Omega_+ \rightarrow T(f) \land T(f)$ (where $+$ signifies a disjoint base point).

For many applications, it is importrant that α is given by the Thomification of an explicit map $g : \Omega \times \Omega \rightarrow \Omega \times \Omega$, where $g(x, y) = (xy^{-1}, y)$. For details, see [2].

Our purpose here is to note that Theorem 1 follows from a strong form of the Thom isomorphism theorem in generalized homology. Specifically, we assume given a stable spherical fibration $\nu : X \rightarrow BF$ over a locally finite CW complex X, and a ring spectrum E orienting ν; i.e. a Thom class $U : T(\nu) \rightarrow E$ whose restriction to a fibre $S^0 \hookrightarrow T(\nu)$ is the unit of E. Then we have

Theorem 2. There is a homotopy equivalence $\alpha(U) : E \land T(\nu) \rightarrow E \land X_+$ which on homotopy groups induces the traditional Thom isomorphism

$$\phi_{\nu} : E_{\ast}(T(\nu)) = \pi_{\ast}(E \land T(\nu)) \xrightarrow{\nu} \pi_{\ast}(E \land X_+) = E_{\ast}(X_+).$$

Proof. First suppose that X has finite dimension, so that ν lifts to $\nu_n : X \rightarrow BF_n$ for suitably large n. Let $p_n : S(\nu_n) \rightarrow X$ be the associated n-sphere fibration, so that $T(\nu_n) = X \cup_{p_n} CS(\nu_n)$.

Now write $\Delta : T(\nu_n) \rightarrow T(\nu_n) \land X_+$ for the diagonal

$$x \mapsto \begin{cases} (x, p_n(x)), & x \neq \infty, \\ \infty, & x \neq \infty, \end{cases}$$

and consider the composite

$$\alpha(U) : E \land T(\nu_n) \xrightarrow{id \land \Delta} E \land T(\nu_n) \land X_+ \xrightarrow{id \land \Sigma^{n+1}E \land X_+ \mu \land id} E \land \Sigma^{n+1}X_+$$

wher μ is the product in E.

Received by the editors August 4, 1980.

1980 Mathematics Subject Classification. Primary 55N20, 55P10.

1 The first named author is supported in part by NSF Grant MCS 76-07051.

© 1981 American Mathematical Society
0002-9939/81/0000-0280/$01.50
On homotopy groups this map induces a homomorphism $\phi_U: E_{*+n+1}(T(v_n)) \to E_*(X_+)$ which, by very construction, is $\cap U$. Thus ϕ_U is the usual Thom isomorphism, whence $\alpha(U)$ is an equivalence.

To complete the proof for all X, let $n \to \infty$.

Corollary 3. Theorem 1 is true.

Proof. Let $X = \Omega$; choose $E = T(v)$ and U as the identity. Then $\alpha(id): T(v) \cap T(v) \to T(v) \cap \Omega_+$ is just the Thomification of $g': \Omega \times \Omega \to \Omega \times \Omega$ given by $g'(x, y) = (xy, y)$. Thus the inverse of $\alpha(id)$ is the Thomification of g^{-1}, and g^{-1} is clearly g.

Corollary 4. Suppose $v: X \to BO$ lifts to the $(i - 1)$-connected cover $BO(i)$. Let $MO(i)$ be the corresponding Thom spectrum. Then there is an equivalence $\beta: MO(i) \wedge T(v) \to MO(i) \wedge X_+$.

Applying this, we deduce a result of [1].

Corollary 5. Let $N(i)$ be such that $N(i)\xi$ is trivial over RP^1, where ξ is the Hopf line bundle. Then there is an equivalence $MO(i) \wedge RP^\infty_{N(i)+j} \to MO(i) \wedge \Sigma^{N(i)}RP^\infty_j$ for all j (where $RP^m_n = RP^m / RP^{n-1}$).

Proof. Consider the composite

$$
MO(i) \wedge RP^\infty_{N(i)+j} \to MO(i) \wedge RP^\infty_{N(i)} \wedge RP^\infty_j
$$

$$
\cong \to \beta \wedge \text{id}

\to \to \cong

MO(i) \wedge \Sigma^{N(i)}RP^\infty_+ \wedge RP^\infty_j \to MO(i) \wedge \Sigma^{N(i)}RP^\infty_j,
$$

where the first map is induced by the diagonal $T(N(i)\xi \oplus j\xi) \to T(N(i)\xi) \wedge T(j\xi)$, and the third by the projection $RP^\infty_+ \to S^0$.

A simple homology calculation shows the composite to be an equivalence.

References

Department of Mathematics, Northwestern University, Evanston, Illinois 60201

Department of Mathematics, The University of Manchester, Manchester, England M13 9PL