A note on matrices with positive definite real part
HTML articles powered by AMS MathViewer
- by David London
- Proc. Amer. Math. Soc. 82 (1981), 322-324
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612711-1
- PDF | Request permission
Abstract:
A lemma characterizing complex matrices with positive definite real part is given. It is shown that many results concerning such matrices are straightforward consequences of this lemma.References
- Ky Fan, Generalized Cayley transforms and strictly dissipative matrices, Linear Algebra Appl. 5 (1972), 155–172. MR 296084, DOI 10.1016/0024-3795(72)90025-0
- Ky Fan, On real matrices with positive definite symmetric component, Linear and Multilinear Algebra 1 (1973), no. 1, 1–4. MR 347857, DOI 10.1080/03081087308817001
- Shmuel Friedland, Matrices satisfying the van der Waerden conjecture, Linear Algebra Appl. 8 (1974), no. 6, 521–528. MR 453770, DOI 10.1016/0024-3795(74)90086-x F. R. Gantmacher, The theory of matrices. I, Chelsea, New York, 1959.
- Charles R. Johnson, An inequality for matrices whose symmetric part is positive definite, Linear Algebra Appl. 6 (1973), 13–18. MR 311689, DOI 10.1016/0024-3795(73)90003-7
- Charles R. Johnson, Inequalities for a complex matrix whose real part is positive definite, Trans. Amer. Math. Soc. 212 (1975), 149–154. MR 424851, DOI 10.1090/S0002-9947-1975-0424851-2
- A. M. Ostrowski and Olga Taussky, On the variation of the determinant of a positive definite matrix, Indag. Math. 13 (1951), 383–385. Nederl. Akad. Wetensch. Proc. Ser. A 54. MR 0047597
- Olga Taussky, A determinantal inequality of H. P. Robertson. I, J. Washington Acad. Sci. 47 (1957), 263–264. MR 89825
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 322-324
- MSC: Primary 15A21
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612711-1
- MathSciNet review: 612711