On the ubiquity of herringbones in finitely generated lattices
HTML articles powered by AMS MathViewer
- by I. Rival, W. Ruckelshausen and B. Sands
- Proc. Amer. Math. Soc. 82 (1981), 335-340
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612714-7
- PDF | Request permission
Abstract:
Every finitely generated infinite lattice of finite width contains a subset isomorphic to the "herringbone" or its dual.References
- H. Bauer and W. Poguntke, Lattices of width three: an example and a theorem, Contributions to general algebra (Proc. Klagenfurt Conf., Klagenfurt, 1978) Heyn, Klagenfurt, 1979, pp. 47–54. MR 537405
- W. Poguntke and B. Sands, On finitely generated lattices of finite width, Canadian J. Math. 33 (1981), no. 1, 28–48. MR 608852, DOI 10.4153/CJM-1981-004-5
- Howard L. Rolf, The free lattice generated by a set of chains, Pacific J. Math. 8 (1958), 585–595. MR 103843
- Rudolf Wille, Jeder endlich erzeugte, modulare Verband endlicher Weite ist endlich, Mat. Časopis Sloven. Akad. Vied 24 (1974), 77–80 (German, with English summary). MR 354474
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 335-340
- MSC: Primary 06B05
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612714-7
- MathSciNet review: 612714