THE BRUHAT ORDER OF THE SYMMETRIC GROUP
IS LEXICOGRAPHICALLY SHELLABLE

PAUL H. EDELMAN

Abstract. The title theorem is proven. It then follows from a theorem of Björner
that the simplicial complex of chains of this Bruhat order is shellable and thus
Cohen-Macaulay. It is further established that this complex is a double cone over a
triangulation of a sphere.

In this note we present an elementary proof that the Bruhat order of the
symmetric group S_n is lexicographically shellable and hence Cohen-Macaulay.
Using a theorem of Verma we obtain as a corollary that $\Delta(S_n)$, the simplicial
complex of chains of S_n, is a double cone over a triangulation of a sphere of
dimension $(\frac{n}{2}) - 2$. We will employ the notation and terminology of Björner [2].

A finite poset P is said to be bounded if it has a maximum and a minimum
element, denoted $\hat{1}$ and $\hat{0}$ respectively. It is called pure if all of its maximal chains
are the same length and it is graded if it is both bounded and pure. The rank of P is
the length of a maximal chain. An element x of a graded poset P has a well-defined
rank $\rho(x)$ equal to the length of an unrefinable chain from $\hat{0}$ to x in P. If P is
bounded let \tilde{P} be the poset $P - \{\hat{0}, \hat{1}\}$.

The order complex $\Delta(P)$ of a poset P is the simplicial complex of all chains in P.
A poset is said to be shellable if $\Delta(P)$ is shellable. For the definition of a shellable
complex see [2] or [4]. Similarly P is called Cohen-Macaulay if $\Delta(P)$ is. See [1], [2]

Let $C(P)$ be the set of covering relations

$$C(P) = \{ (x, y) \in P \times P \mid x \text{ is covered by } y \}.$$

An edge-labeling of P is a map $\lambda: C(P) \rightarrow \Lambda$ where Λ is some poset. An edge-labeling
is an assignment of elements of Λ to the edges in the Hasse
diagram of P. An unrefinable chain $x_0 < x_1 < \cdots < x_n$ in a poset with an
edge-labeling λ will be called increasing if $\lambda(x_0, x_1) < \lambda(x_1, x_2) < \cdots <
\lambda(x_{n-1}, x_n)$ in Λ.

With every saturated chain c, say with elements $x_0 < x_1 < \cdots < x_n$ of a poset
P having an edge-labeling λ, we associate the n-tuple

$$\pi(c) = (\lambda(x_0, x_1), \lambda(x_1, x_2), \ldots, \lambda(x_{n-1}, x_n)).$$

We call $\pi(c)$ the Jordan-Hölder (J-H) sequence of c. Totally order Λ^n by the
lexicographic order: (a_1, a_2, \ldots, a_n) precedes (b_1, \ldots, b_n) if and only if $a_i < b_i$ in
the first coordinate where they differ.

Received by the editors May 30, 1980.

1980 Mathematics Subject Classification. Primary 06A10.

© 1981 American Mathematical Society
0002-9939/81/0000-0308/$02.00
Let \(\lambda \) be the edge-labeling of a graded poset \(P \). \(\lambda \) is said to be an \textit{L-labeling} if it satisfies the following two conditions:

(i) In every interval \([x, y]\) of \(P \) there is a unique increasing unrefinable chain \(c \), \(x = x_0 < x_1 < \cdots < x_n = y \).

(ii) The J-H sequence of the unique chain from (i) is lexicographically first among the J-H sequences of all unrefinable chains \(x = z_0 < z_1 < \cdots < z_n = y \) in \([x, y]\).

A graded poset is called \textit{lexicographically shellable} if there exists an \(L \)-labeling of \(P \).

\textbf{Theorem (Björner [2]).} If \(P \) is lexicographically shellable then \(P \) is shellable and hence Cohen-Macaulay. \(\square \)

We now define the Bruhat order on the symmetric group \(S_n \). For our purposes \(S_n \) will be the set of all permutations of the set \([n] = \{1, 2, \ldots, n\}\). We will write \(\pi \in S_n \) as a word \(a_1a_2 \cdots a_n \) in the letters \(1, 2, \ldots, n \). A \textit{reduction} of \(\pi \) is a permutation obtained from \(\pi \) by interchanging some \(a_i \) with some \(a_j \) provided \(i < j \) and \(a_i > a_j \). Define \(\sigma < \pi \) if \(\sigma \) can be obtained from \(\pi \) by a sequence of reductions. Figure 1 is a drawing of the poset \(S_3 \).

![Figure 1](image_url)

It is well known that the rank of a permutation \(\pi \) in \(S_n \) is the number of inversions in \(\pi \), i.e. the number of pairs \((i, j)\) where \(i < j \) and \(a_i > a_j \). Thus if \(\sigma \) is covered by \(\pi \) then \(\pi \) has one more inversion than \(\sigma \). The rank of \(S_n \) is \(\binom{n}{2} \).

\textbf{Theorem.} \(S_n \) is \textit{lexicographically shellable}.

\textbf{Proof.} Let \(Z \) be the set of ordered pairs \((i, j) \in [n] \times [n]\) such that \(i < j \). Totally order \(Z \) by \((i, j) < (r, s)\) if \(i < r \) or if \(i = r \) and \(j < s \). Let \(\lambda: C(S_n) \to Z \) be the labeling

\[\lambda(\sigma_1, \sigma_2) = (i, j) \]

if \(i \) and \(j \) are interchanged in \(\sigma_1 \) to obtain \(\sigma_2 \) and \(i < j \). For example in \(S_3 \) we have \(\lambda(123, 213) = (1, 2) \) and \(\lambda(213, 312) = (2, 3) \).

We proceed to show that \(\lambda \) is an \(L \)-labeling by first showing that in any interval \([x, y]\) the lexicographically first chain increases and then showing that there is a unique increasing chain in \([x, y]\).
We will show that the lexicographically first chain increases by contradiction. There are a number of cases to consider. We will present one and leave the others to the reader. Let \(c \) be the lexicographically first chain in \([x, y]\), \(x = \pi_0 < \pi_1 < \cdots < \pi_n = y \) and suppose it has a decrease. Then there are three permutations \(\pi_{r-1} < \pi_r < \pi_{r+1} \) such that

\[
\lambda(\pi_{r-1}, \pi_r) > \lambda(\pi_r, \pi_{r+1}).
\]

Suppose \(\lambda(\pi_{r-1}, \pi_r) = (i, j) \) and \(\lambda(\pi_r, \pi_{r+1}) = (i, k) \) where \(j > k \). Then the permutation \(\pi_{r-1} \) looks like

\[
a_1 a_2 \ldots i \ldots j \ldots k \ldots a_n
\]

since the interchange \((i, j)\) must produce a cover. Define \(\pi'_r \) by interchanging \(i \) and \(k \) in \(\pi_{r-1} \). \(\pi'_r \) covers \(\pi_{r-1} \) and is covered by \(\pi_{r+1} \). Moreover \(\lambda(\pi_{r-1}, \pi'_r) = (i, k) \). Since \((i, k) < (i, j) \) the chain \(c' \) with \(\pi'_r \) replacing \(\pi_r \) in \(c \) is lexicographically earlier than \(c \). This is a contradiction.

There are other cases to consider when the labels \(\lambda(\pi_{r-1}, \pi_r) \) and \(\lambda(\pi_r, \pi_{r+1}) \) are disjoint. They are similar to the above argument.

What is left to show is that the increasing chain in the interval \([x, y]\) is unique. This follows from a series of remarks. Let \(x = a_1 a_2 \ldots a_n \) and \(y = b_1 b_2 \ldots b_n \). Define \(p(r) = j \) if and only if \(r \sim c \) and define \(s(r) = j \) if and only if \(r = b \). Let \(i \) be the smallest number such that \(p(i) \neq s(i) \).

Remark 1. No number less than \(i \) will appear in any label in \([x, y]\). Suppose this were not true. Then there is some label \((j, k)\) in \([x, y]\) where \(j < i \) and \(j \) is the smallest number appearing in such a label. Since \(p(j) = s(j) \) when \(j \) is interchanged with \(k \), \(j \) is moved to the right of the correct position for it in \(y \). Since no smaller number appears as a label \(j \) cannot be moved back to the left. Hence \(j \) cannot appear in a label in \([x, y]\).

Remark 2. \(p(i) < s(i) \). This follows from an argument similar to that used in Remark 1.

Remark 3. In an increasing chain, the first label contains \(i \). The element \(i \) must be switched sometime to get from \(x \) to \(y \) and since it is the smallest number it must occur first.

Remark 4. If \(\lambda(x, \pi_1) = (i, k) \) where \(\pi_1 \) is the second permutation in an increasing chain, then \(p(k) < s(i) \). This follows from the same arguments as those used in Remark 1.

Let \(j \) be the smallest number such that \(i < j \) and \(p(i) < p(j) < s(i) \).

Remark 5. The first label on an increasing chain is \((i, j)\). Suppose this were not the case. By Remark 3 the first label involves \(i \). Suppose it is \((i, k) \), \(k \neq j \). By Remark 4, \(p(k) < s(i) \). If \(p(j) < p(k) \) then the switch \((i, k)\) increases the number of inversions in the permutation by at least two, since \(k > j > i \). So \((i, k)\) does not produce a cover. Hence \(p(k) < p(j) \). But sometime \(i \) and \(j \) must switch, since \(p(i) < p(k) < p(j) \). Then the label \((i, j)\) appears which forces a decrease. So the first label must be \((i, j)\).

Hence an increasing chain is uniquely determined. Since the lexicographically first chain increases, \(\lambda \) is an \(L \)-labeling and the proof is complete. \(\square \)
A graded poset is called Eulerian if in every interval \([x, y]\) the identity
\[
\sum_{x < z < y} (-1)^{p(z) - p(x)} = 0
\]
holds. If \(P\) is Eulerian then \(\bar{P}\) also satisfies \((*)\) for all intervals \([x, y]\). It is easily seen that every interval of rank 2 in an Eulerian poset is isomorphic to the poset in Figure 2. R. Stanley observed that if \(P\) satisfies \((*)\) and is of rank \(k\) then \(\Delta(P)\) is a pseudomanifold of dimension \(k\), i.e. every \(k - 1\) face is contained in exactly two \(k\) faces. From this observation we deduce

Corollary. \(\Delta(\bar{S}_n)\) is a triangulation of a sphere of dimension \(\left(\begin{smallmatrix} n-1 \end{smallmatrix}\right) - 2\).

Proof. Verma [7] has shown that \(S_n\) is Eulerian. Hence \(\Delta(\bar{S}_n)\) is a pseudomanifold. Since \(\Delta(\bar{S}_n)\) is shellable by the previous theorem so is \(\Delta(\bar{S}_n)\). Since it is known that a shellable pseudomanifold is a sphere (see for example [3, p. 444]) the corollary is proven.

R. Proctor has extended the Theorem to the Bruhat orders of the other classical Weyl groups as well as their quotients by parabolic subgroups [5].

Figure 2

Note added in proof. Björner and Wachs have recently generalized the Theorem for all Coxeter groups modulo a parabolic subgroup ([Bruhat orders of Coxeter groups and shellability, Report 1980-No. 20, Department of Mathematics, University of Stockholm]).

References

5. R. Proctor, Classical Bruhat orders are lexicographically shellable (in preparation).