ON THE DINI TEST AND DIVERGENCE OF FOURIER SERIES

CALIXTO P. CALDERÓN

Abstract. In this note we prove that no condition weaker than the Dini assures the pointwise convergence of a Fourier series in a set of positive measure.

1. Statement of results. It is well known that if a function \(f \) belonging to \(L^1[0, 2\pi] \) satisfies at a point \(x \) the condition

\[
\int_{-\delta}^{\delta} \frac{|f(x) - f(x - t)|}{|t|} \, dt < \infty
\]

(1.1)

then the partial sums \(S_m \) of the Fourier series of \(f \) converge to \(f(x) \).

The above condition is optimal for individual points. In fact, “Given any continuous \(\mu(t) > 0 \) such that \(\mu(t)/t \) is not integrable in a neighborhood of \(t = 0 \), we can find a continuous function \(f \), such that \(|f(t) - f(0)| \leq \mu(t) \) for small \(t \) and \(S_m(f) \) diverges at \(t = 0 \).” (See [5, Vol. I, Theorem 2.4, p. 303].)

On the other hand, if a periodic function \(f \) satisfies the conditions \(|f(x + t) - f(x)| < \mu(t) \), \(0 < t < \delta(x) \), in a set \(E \) of positive measure, then \(S_m(f) \) converges at almost every \(x \) in \(E \). This fact is an easy consequence of Carleson’s theorem (see [1]).

The purpose of this note is to show that the condition (1.1) is the optimal one for \(x \) belonging to a set \(E \) of positive measure, if we give a suitable definition of what we understand by a weaker condition. More precisely, for each \(w(t) \) that satisfies

\[
\begin{align*}
(i) & \quad w(t) \text{ increasing and continuous}, \quad w(0) = 0, \\
(ii) & \quad \int_{0}^{\delta} w(t) \, dt/t = \infty,
\end{align*}
\]

(1.2)

we have

2. Theorem. There is a function \(g \) belonging to \(L^1[0, 2\pi] \) and a set \(F \) of positive measure such that

\((a) \) \(\int_{-\delta}^{\delta} \frac{|g(x + t) - g(x)|}{|t|} \, w(|t|)/|t| \, dt < \infty \), \(x \in F \).

\((a\alpha) \) The partial sums \(S_n(g) \) of the Fourier series of \(g \) diverge a.e. in \(F \).

Proof. First, we invoke the following theorem due to Marcinkiewicz (see [3]):

Theorem 2.1. Let \(\varphi(t) \) be a continuous function, increasing and such that \(\varphi(0) = 0 \). Assume in addition that

\((i) \) \([\varphi(t)]^{-1} = o(\log 1/t) \), \(t \to 0 \).

Then, there is a function \(f \in L^1[0, 2\pi] \) such that

\((\beta) \) \((1/|h|) \int_{-\delta}^{\delta} |f(x + t) - f(x)| \, dt = O[\varphi(|h|)] \) a.e.;

\((\beta\beta) \) The partial sums \(S_n(f) \) of the Fourier series of \(f \) diverge a.e.
Secondly, we need a lemma of very well-known type.

Lemma 2.2. Let \(\varphi(t) \) be defined by

\[
\varphi(t) = \left[\int_{t}^{1} w(s) \frac{ds}{s} \right]^{-1}, \quad 0 < t < 1,
\]

and \(w(s) \) as in (1.2). Suppose that a function \(f \in L^1[0, 2\pi] \) satisfies

(i) \((1/|h|) \int_{h}^{0} |f(x + t) - f(x)| \, dt = O(\varphi(|h|)) \) a.e. in \([0, 2\pi] \).

Then, for each \(\epsilon > 0 \) there are a perfect subset \(F \) of \([0, 2\pi] \) and a constant \(C \) such that

(\(\alpha \)) \(|F| > 2^n - \epsilon \),

(\(\alphaa \)) \(|f(x_1) - f(x_2)| < C\varphi(|x_1 - x_2|) \) whenever \(x_1, x_2 \in F \) and \(0 < |x_1 - x_2| < 1/2 \),

(\(\alphaaa \)) \((1/|h|) \int_{h}^{0} |f(x) - f(x + t)| \, dt < C\varphi(|h|) \) whenever \(x \in F \).

The proof follows verbatim the lines of the corresponding result in [5, Vol. II, p. 171]. (There, \(\varphi(t) = 1/|\log t| \).) One also has to use the fact

\[
\varphi(ct) < k\varphi(t), \quad c > 1, \quad 0 < t < 1/4C, \quad (2.2.1)
\]

which is an easy consequence of the particular form that \(\varphi(t) \) has.

3. Final steps. Consider

\[
\varphi(t) = \left[\int_{t}^{1} \tilde{w}(s) \frac{ds}{s} \right]^{-1}, \quad 0 < t < 1/2,
\]

where \(\tilde{w}(s) = \max(|\log s|^{-\delta}, w(s)), 0 < \delta < \frac{1}{2}, 0 < s < \frac{1}{2} \) and \(w(s) \) as in (1.2). On account of the particular form of \(\varphi(t) \), we get

\[
[\varphi(t)]^{-1} = o(\log(1/t)), \quad t \to 0. \quad (3.1)
\]

Let \(\tilde{f}(x) \) be the function whose existence is assured by Theorem 2.1 for the particular choice we made of \(\varphi(t) \). Let \(\epsilon > 0 \) be a positive constant, \(F \) and \(C \) be the perfect subset and the constant of Lemma 2.2. Call \(\tilde{f} \) any continuous extension of \(f \) from \(F \) to \([0, 2\pi] \) such that

\[
|\tilde{f}(x_1) - \tilde{f}(x_2)| < C\varphi(|x_1 - x_2|),
\]

\[x_1, x_2 \in [0, 2\pi] \text{ and } 0 < |x_1 - x_2| < 1/2. \quad (3.2)\]

Write now \(f = \tilde{f} + g \) and consider

\[
\int_{F} \left(\int_{0}^{2\pi} |g(x) - g(y)| \frac{\tilde{w}(|x - y|)}{|x - y|} \, dy \right) \, dx. \quad (3.3)
\]

Since \(g(x) = 0, x \in F \), it is enough to estimate

\[
\int_{F} \left(\int_{G} |g(y)| \frac{\tilde{w}(|x - y|)}{|x - y|} \, dy \right) \, dx. \quad (3.4)
\]

Here, \(G \) denotes the complement of \(F \) with respect to \([0, 2\pi] \). Write \(G = \bigcup_{i=1}^{\infty} I_k \), \(I_i \cap I_j = \emptyset, i \neq j \), where \(\text{dist}(I_k, F) \) satisfies

\[
|I_k| < \text{dist}(I_k, F) < 2|I_k|, \quad k = 1, 2, \ldots. \quad (3.5)
\]
384 C. P. CALDERÓN

On account of the definition of \(\tilde{f} \) and the above inequality we have

\[
\int_{I_k} |g(y)| \, dy < K_0 \varphi(|I_k|)|I_k|, \tag{3.6}
\]

which is valid for all \(k \) and a suitable choice of \(K_0 \).

Interchanging the order of integration in (3.4) and using (3.6) we get

\[
\sum_{1}^{\infty} \int_{I_k} |g(y)| \left(\int_{F} \frac{\overline{w}(x - y)}{|x - y|} \, dx \right) \, dy < \text{(constant)} \sum_{1}^{\infty} \left(\int_{I_k} |g(y)| \, dy \right) \varphi(|I_k|)^{-1}
\]

\[
< \text{constant} \sum_{1}^{\infty} |I_k|. \tag{3.7}
\]

The finiteness of (3.3) shows that

\[
\int_{-\delta}^{\delta} |g(x)| - g(x + t)| \overline{w}(|t|) \, dt < \infty \tag{3.8}
\]

for almost every \(x \) in \(F \). By construction the Fourier series of \(\tilde{f} \) diverges a.e. The Fourier series of \(f \) converges a.e. because

\[
\int_{0}^{2\pi} \int_{0}^{2\pi} |\tilde{f}(x) - \tilde{f}(y)|^2 \frac{1}{|x - y|} \, dx \, dy < \infty. \tag{3.9}
\]

(By construction we have that \(\varphi(t) < C(1/|\log t|^{1-\delta}) \) with \(0 < \delta < 1/4 \).) (See Theorem 1.14 in [5, p. 164].)

Finally, (3.8) above also holds for \(w(t) \) on account of the fact that \(w(t) < \overline{w}(t) \). This concludes the proof.

4. A few additional remarks. The Dini condition (1.1) for \(x \in E, |E| > 0 \), is not comparable to the condition

\[
\frac{1}{h} \int_{0}^{h} |f(x + t) - f(x)| \, dt = O\left(\frac{1}{|\log h|}\right), \quad x \in E. \tag{4.1}
\]

The reason for that is the fact that (1.1) assures convergence of \(S_m(f) \) everywhere in \(E \), while (4.1) assures only convergence a.e. in \(E \) (see [4] and [5, Vol. I, p. 302 (2.1)]).

Theorem 2.1 above was proved by Marcinkiewicz to show that condition (4.1) can not be replaced by any similar weaker one.

Finally, I would like to thank Professor Zygmund for many opportune and helpful suggestions concerning the matters of this paper.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS – CHICAGO CIRCLE, CHICAGO, ILLINOIS 60680