FIXED POINTS AND BOUNDARIES

ERIC CHANDLER

ABSTRACT. A lemma of Ludvik Janos is used to show that if a nonexpansive self-map \(T \) of a compact set \(X \) is contractive on \(\Delta'X \), the boundary of \(X \) in \(\text{co} \ X \), then \(T \) has a fixed point in \(X \). It is further proven that if \(T(\Delta'X) \cap \Delta'X = \emptyset \), or if \(T \) maps any point \(y \) of \(X \) away from \(\Delta'X \), then \(T \) has a fixed point in \(X \).

In the results which follow, \(X \) is a compact subset of a strictly convex normed linear space \(E \) and \(T : X \rightarrow X \) is nonexpansive. For a subset \(S \) of \(E \) we shall let \(\Delta' S \) denote the boundary of \(S \) in \(\text{co} \ S \), the closed convex hull of \(S \).

In [1, Lemma 1] we stated the following version of a result of Janos [4, Lemma 3.1]:

Lemma 1. There exists a nonexpansive retraction \(r \) of \(X \) onto the compact set \(C_T = \bigcap_{i=1}^{\infty} T^i X \). Furthermore, this \(r \) is in the closure, in the pointwise topology of \(X^X \), of the set \(\{ T^i \}_{i=1}^{\infty} \).

Lemma 2. \(\Delta' C_T \subseteq \Delta' X \).

Proof. We claim that \((\text{co} \ C_T) \cap X = C_T \), for if not, there exists an \(x \in X \setminus C_T \) such that \(x = a_1 x_1 + \cdots + a_n x_n \) where \(x_i \in C_T, a_i > 0 \), and \(\sum_{i=1}^{n} a_i = 1 \). Edelstein has shown [2, Proposition 2] that if \(f : E \rightarrow E \) is a nonexpansive mapping of a strictly convex normed linear space \(E \) into itself and if \(f|_A, A \subset E \), is an isometry, then

\[
x = ax_1 + (1 - a)x_2 \quad \text{for } x_1, x_2 \in A \text{ and } 0 < a < 1
\]

implies that

\[
f(x) = af(x_1) + (1 - a)f(x_2).
\]

Thus, since \(r|_{C_T} \) is the identity map we have \(rx = r(a_1 x_1 + \cdots + a_n x_n) = a_1 rx_1 + \cdots + a_n rx_n = a_1 x_1 + \cdots + a_n x_n = x \). But \(rx \in C_T \) and so \(x \in C_T \) which is impossible. Thus \((\text{co} \ C_T) \cap X = C_T \).

Now if \(y \in \Delta' C_T \) and \(U \) is any open set containing \(y \), then the open set \(U \setminus C_T \) contains a point in \((\text{co} \ C_T) \setminus C_T \), and so also a point \(z \) in \((\text{co} \ C_T) \setminus C_T \). But \(z \) cannot belong to \(X \) since \((\text{co} \ C_T) \cap X = C_T \). Thus \(z \in (\text{co} X) \setminus X \) and so \(y \in \Delta' X \). Hence \(\Delta' C_T \subseteq \Delta' X \).

Theorem 1. If \(T|_{\Delta'X} \) is contractive (i.e. if \(\| Tx - Ty \| < \| x - y \| \) for all \(x, y \) in \(\Delta' X \)) then \(T \) has a fixed point in \(X \).

Received by the editors June 11, 1980 and, in revised form, October 2, 1980.

Key words and phrases. Fixed point, nonexpansive map, strictly convex, boundary in convex hull.

© 1981 American Mathematical Society

0002-9939/81/0000-0318/$01.75
Proof. T maps C_T onto C_T and C_T is compact. If C_T is convex, then Schauder's theorem implies that T has a fixed point in C_T. If C_T is not convex, then $\Delta'C_T \neq \emptyset$ and obviously $|\Delta'C_T| > 2$. By Lemma 2, $\Delta'C_T \subseteq \Delta'X$. Any nonexpansive mapping of a compact metric space onto itself is an isometry [3, Satz 1b] and so T is an isometry on C_T and thus on $\Delta'C_T$. This is a contradiction, and so C_T must be convex and thus contain a fixed point of T.

Theorem 2. If $T(\Delta'X) \cap \Delta'X = \emptyset$ then T has a fixed point in X.

Proof. As before, if C_T is convex, we are done. So suppose $\Delta'C_T \neq \emptyset$.

Now the retraction r is the identity map I on C_T, and so I is in the closure, in the pointwise topology, of the set $(T^t)_{t=1}^\infty$. This means that for any finite subset of C_T, in particular for any $x, y \in \Delta'C_T$, we can find a subsequence (n_i) so that $T^{n_i}x \to Ix = x$ and $T^{n_i}y \to Iy = y$.

Let us assume then that $x, y \in \Delta'C_T$ and, without loss of generality, that the open line segment $L = \{ax + (1-a)y | 0 < a < 1\}$ lies entirely in the complement of C_T. Since Tx and Ty do not belong to $\Delta'C_T$ (for by Lemma 2, $\Delta'C_T \subseteq \Delta'X$) there exists an a, $0 < a < 1$, such that $z = ax + (1-a)Ty$ belongs to C_T. Let (n_i) be the subsequence associated with x, y such that $T^{n_i}x \to x$ and $T^{n_i}y \to y$.

Then by [2, Proposition 2], $T^{n_i-1}z = T^{n_i-1}(ax + (1-a)Ty) = aT^{n_i}x + (1-a)T^{n_i}y$ which approaches the point $ax + (1-a)y$ on L in the complement of C_T. This is impossible since $T: C_T \to C_T$. Thus C_T is convex and so contains a fixed point of T.

(Note that in the proof of this theorem we could have assumed as the hypothesis that if there exists an $n > 1$ such that $T^n\Delta'X \cap \Delta'X = \emptyset$ then T has a fixed point in X.)

Given a subset $Q \subseteq X$ and a point $y \in X$ we say that “T maps y away from Q” if $||Ty - x|| > ||y - x||$ for all $x \in Q$.

Theorem 3. If there exists a point $y \in X$ such that T maps y away from $\Delta'X$, then T has a fixed point in X.

Proof. The real-valued map $\phi(x) = ||Ty - x|| - ||y - x|| > 0$ on the compact set $\Delta'X$ is continuous and so there exists an $\epsilon > 0$ such that $||Ty - x|| - ||y - x|| > \epsilon$ for all $x \in \Delta'X$. If $\Delta'C_T \neq \emptyset$, there is a point z in the compact set $\Delta'C_T$ such that $r = ||y - z|| = \text{dist}(y, \Delta'C_T)$. Consider the open sphere $S = S(y, r + \epsilon)$, and let $w \in S \cap (\text{co} C_T \setminus C_T)$. On the closed line segment $[wz]$ there exists a point $z_0 \in \Delta'C_T$ such that the open line segment (wz_0) lies entirely in $\text{co} C_T \setminus C_T$.

Obviously $Tz_0 \in C_T \cap S(Ty, r + \epsilon)$. We claim that $S(Ty, r + \epsilon) \cap \Delta'C_T = \emptyset$, for if $x \in \Delta'C_T$ then $||Ty - x|| > r$ and $||Ty - x|| - ||y - x|| > \epsilon$ so that $||Ty - y|| > r + \epsilon$. Thus $Tz_0 \in C_T$ but $Tz_0 \not\in \Delta'C_T$.

Let us suppose that the w above is represented: $w = a_1x_1 + \cdots + a_kx_k$ where $x_i \in C_T$, $\Sigma_{i=1}^k a_i = 1$ and $a_i > 0$. The points Tx_i all lie in C_T and thus the point $w_0 = a_1Tx_1 + \cdots + a_kTx_k$ is in $\text{co} C_T$. Now on the open line segment (w_0Tz_0) there must exist a point $p \in C_T$, for otherwise $Tz_0 \in \Delta'C_T$ which is impossible. Let $p = aTz_0 + (1-a)w_0$ where $0 < a < 1$. Then $p = aTz_0 + \Sigma_{i=1}^k(1-a)a_iTx_i$ and $a + \Sigma_{i=1}^k(1-a)a_i = 1$.

For the points \(z_0, x_1, \ldots, x_k \) let \(\{n_j\} \) be a subsequence of \(\{n\} \) for which
\(T^{n_j} z_0 \to z_0 \) and \(T^{n_j} x_i \to x_i \), \(1 \leq i \leq k \). (We can do this since the identity on \(C_T \) is in the pointwise closure of \(\{T^n\}_{n=1}^\infty \).) Then by [2, Proposition 2],
\[
T^{n_j-1}p = T^{n_j-1}\left[aTz_0 + \sum_{i=1}^{k} (1 - a)a_iTx_i \right]
\]
which approaches the point \(az_0 + (1 - a)\sum_{n=1}^{k} a_i x_i = az_0 + (1 - a)w \). Thus
\(T^{n_j-1}p \) approaches a point lying on the open line segment \((wz_0) \). This is not possible since \((wz_0) \) lies entirely outside \(C_T \) and \(T: C_T \to C_T \). Thus \(\Delta' C_T = \emptyset, C_T \) is convex, and so \(T \) has a fixed point in \(C_T \).

References

Department of Mathematics, Randolph-Macon Woman’s College, Lynchburg, Virginia 25403