Equivalent conditions for decomposable operators
HTML articles powered by AMS MathViewer
- by Ridgley Lange
- Proc. Amer. Math. Soc. 82 (1981), 401-406
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612729-9
- PDF | Request permission
Abstract:
Several new characterizations of an arbitrary decomposable operator on Banach space are given; for example, one of these is in terms of spectral conditions on an arbitrary invariant subspace, while another uses the spectral manifold ${X_T}({G^ - })$ (rather than ${X_T}(F)$). From these results a short proof of Frunzǎ’s duality theorem is derived. Finally we give sufficient conditions that the predual of a decomposable operator is of the same class.References
- C. Apostol, Roots of decomposable operator-valued analytic functions, Rev. Roumaine Math. Pures Appl. 13 (1968), 433–438. MR 233225
- I. Erdélyi and R. Lange, Operators with spectral decomposition properties, J. Math. Anal. Appl. 66 (1978), no. 1, 1–19. MR 513482, DOI 10.1016/0022-247X(78)90266-4
- James K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61–69. MR 374985
- Ciprian Foiaş, Spectral maximal spaces and decomposable operators in Banach space, Arch. Math. (Basel) 14 (1963), 341–349. MR 152893, DOI 10.1007/BF01234965
- Ştefan Frunză, A duality theorem for decomposable operators, Rev. Roumaine Math. Pures Appl. 16 (1971), 1055–1058. MR 301552
- A. A. Jafarian and F.-H. Vasilescu, A characterization of $2$-decomposable operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 769–771. MR 358423
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Ridgley Lange, Analytically decomposable operators, Trans. Amer. Math. Soc. 244 (1978), 225–240. MR 506617, DOI 10.1090/S0002-9947-1978-0506617-0
- Mehdi Radjabalipour, Equivalence of decomposable and $2$-decomposable operators, Pacific J. Math. 77 (1978), no. 1, 243–247. MR 507632
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 401-406
- MSC: Primary 47B40
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612729-9
- MathSciNet review: 612729