On the compactification of strongly pseudoconvex surfaces
HTML articles powered by AMS MathViewer
- by Vo Van Tan
- Proc. Amer. Math. Soc. 82 (1981), 407-410
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612730-5
- PDF | Request permission
Abstract:
In this paper, we shall prove that the compactification of a strongly pseudoconvex surface is either a projective algebraic or an Inoue surface. Furthermore, we shall construct an example of a strongly pseudoconvex surface $X$ which admits two distinct compactifications: One $Mβ$ projective algebraic and the other one $M$ (highly) nonalgebraic.References
- Hans Grauert, Γber Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331β368 (German). MR 137127, DOI 10.1007/BF01441136
- Alan Howard, On the compactification of a Stein surface, Math. Ann. 176 (1968), 221β224. MR 223602, DOI 10.1007/BF02052827
- Masahisa Inoue, New surfaces with no meromorphic functions, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp.Β 423β426. MR 0442296 K. Kodaira, Collected works. Vols. I, III, Princeton Univ. Press, Princeton, N. J., 1975. Vo Van Tan, On the classification of $q$-convex complex spaces by their compact analytic subvarieties, Ph.D. Thesis, Brandeis University, Waltham, Mass., 1974.
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 407-410
- MSC: Primary 32J05; Secondary 32F30
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612730-5
- MathSciNet review: 612730