Convergence of a class of cubic interpolatory splines
HTML articles powered by AMS MathViewer
- by A. Chatterjee and H. P. Dikshit
- Proc. Amer. Math. Soc. 82 (1981), 411-416
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612731-7
- PDF | Request permission
Abstract:
The interpolation problem of matching a cubic spline at one intermediate point and cubic spline with multiple knots at two intermediate points between the successive knots are studied when the interpolatory points are not necessarily equispaced.References
- Carl de Boor, A practical guide to splines, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York-Berlin, 1978. MR 507062 H. P. Dikshit, On cubic spline interpolation, J. Approximation Theory 22 (1978), 105-111.
- A. Meir and A. Sharma, Convergence of a class of interpolatory splines, J. Approximation Theory 1 (1968), 243–250. MR 235356, DOI 10.1016/0021-9045(68)90001-4
- A. Sharma and J. Tzimbalario, Quadratic splines, J. Approximation Theory 19 (1977), no. 2, 186–193. MR 435674, DOI 10.1016/0021-9045(77)90040-5
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 411-416
- MSC: Primary 41A15; Secondary 65D07
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612731-7
- MathSciNet review: 612731