CONCAVITY OF POWERS OF A CONVOLUTION

DOUGLAS HENSLEY

Abstract. A short geometric proof of a result of Brascamp and Lieb on concavity of powers of a convolution is given.

The following theorem, a special case of Corollary 3.5 of [2], has a very simple proof for positive integers \(p \) and \(q \).

Let \(f, g : \mathbb{R}^n \to \mathbb{R}^+ \cup \{0\} \) be positive on bounded convex sets \(S(f) \), \(S(g) \) respectively and 0 elsewhere. Let \(p \) and \(q \) be positive integers.

Theorem 1. If \(f^{1/p} \) and \(g^{1/q} \) are concave on their respective, convex supports then \((f \ast g)^{1/(p+q+n)} \) is concave on the Minkowski set sum \(S(f) + S(g) \) and 0 elsewhere.

Remark. Suitably interpreted this also holds if \(p \) or \(q \), or both, are zero. The exponent \(1/(p + q + n) \) is best possible, in all cases.

Proof of Theorem 1. Let \(F \subseteq \mathbb{R}^{p+n} = \{(x_1, x_2, \ldots, x_n, w_1, w_2, \ldots, w_p): \left| w_i \right| < \frac{1}{2} f^{1/p}(x_1, x_2, \ldots, x_n) \text{ for } 1 \leq i \leq p\} \). Let

\[
G \subseteq \mathbb{R}^{q+n} = \{(y_1, y_2, \ldots, y_n, v_1, v_2, \ldots, v_q): \left| v_i \right| < \frac{1}{2} g^{1/q}(y_1, y_2, \ldots, y_n) \text{ for } 1 \leq i \leq q\}.
\]

Then \(F, G \) and \(F \times G \) are convex sets.

Denote \((x_1, \ldots, x_n, w_1, \ldots, w_p, y_1, \ldots, y_n, v_1, \ldots, v_q)\) by \((\xi, \omega, \eta, \nu)\) and for \(\xi \in \mathbb{R}^n \) let \(H_\xi \) be the affine space \(\{(\xi, \omega, \eta, \nu): \xi + \eta = \xi\} \). Let \(J_\eta \) be the affine space \(\{(\xi, \omega, \eta, \nu): \xi = \eta\} \). For arbitrary \(\xi \) and \(\eta \), \(F \times G \cap H_\xi \cap J_\eta \) is either empty or the Cartesian product of a \(p \)-dimensional open cube of volume \(f(\eta) \) with a \(q \)-dimensional open cube of volume \(g(\xi - \eta) \). In either case the \((p + q)\)-dimensional volume of \(H_\xi \cap J_\eta \cap F \times G \) is \(f(\eta)g(\xi - \eta) \).

Since \(H_\xi \) is the disjoint union of the \(H_\xi \) and the distance between flats \(H_\xi \cap J_\xi \) and \(H_\xi \cap J_\eta \) is \(\sqrt{2} ||\xi - \eta|| \), the \((p + q + n)\)-dimensional volume \(V(\xi) \) of \(F \times G \cap H_\xi \) is given by

\[
V(\xi) = (\sqrt{2})^n \int_{\xi \in \mathbb{R}^n} f(\eta)g(\xi - \eta) \, d\eta = (\sqrt{2})^n (f \ast g)(\xi).
\]

Let us fix \(z_2, \ldots, z_n \) and consider \(V(\xi) \) as a function of \(z_1 \) alone.

Since the choice of coordinate axes is arbitrary it will suffice to prove that \(V(\xi)^{1/(p+q+n)} \) is concave in \(z_1 \) on the interval where it is positive.

Received by the editors April 1, 1980 and, in revised form, August 15, 1980.

AMS (MOS) subject classifications (1970). Primary 52A40, 52A20, 60D05.

© 1981 American Mathematical Society

0002-9939/81/0000-0340/$01.50
Let $H' = \{ (\bar{x}, \bar{w}, \bar{y}, \bar{v}) : x_i + y_i = z_i \text{ for } 2 \leq i \leq n \}$, and let $H''(z_1) = \{ (\bar{x}, \bar{w}, \bar{y}, \bar{v}) : x_1 + y_1 = z_1 \}$. Then $F \times G \cap H'$ is convex and $H''(z_1)$ is a hyperplane in H'. Let $\phi(z_1) = V^{1/(p+q+n)}$ where V is the $(p + q + n)$-dimensional volume of $(F \times G \cap H') \cap H''(z_1)$. Then by the Brunn-Minkowski theorem, $\phi(z_1)$ is concave on its support. □

REFERENCES

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843