Concavity of powers of a convolution
HTML articles powered by AMS MathViewer
- by Douglas Hensley
- Proc. Amer. Math. Soc. 82 (1981), 503-504
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612750-0
- PDF | Request permission
Abstract:
A short geometric proof of a result of Brascamp and Lieb on concavity of powers of a convolution is given.References
- C. Borell, Convex set functions in $d$-space, Period. Math. Hungar. 6 (1975), no. 2, 111–136. MR 404559, DOI 10.1007/BF02018814
- Herm Jan Brascamp and Elliott H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22 (1976), no. 4, 366–389. MR 0450480, DOI 10.1016/0022-1236(76)90004-5
- Ju. S. Davidovič, B. I. Korenbljum, and B. I. Hacet, A certain property of logarithmically concave functions, Dokl. Akad. Nauk SSSR 185 (1969), 1215–1218 (Russian). MR 0241584
- H. G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958. MR 0124813, DOI 10.1017/CBO9780511566172
- I. A. Ibragimov, On the composition of unimodal distributions, Teor. Veroyatnost. i Primenen. 1 (1956), 283–288 (Russian, with English summary). MR 0087249
- C. G. Lekkerkerker, A property of logarithmic concave functions. I, II, Indag. Math. 15 (1953), 505–513, 514–521. Nederl. Akad. Wetensch. Proc. Ser. A 56. MR 0059977, DOI 10.1016/S1385-7258(53)50063-0
- András Prékopa, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1973), 335–343. MR 404557
- Yosef Rinott, On convexity of measures, Ann. Probability 4 (1976), no. 6, 1020–1026. MR 428540, DOI 10.1214/aop/1176995947
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 503-504
- MSC: Primary 52A20; Secondary 60D05
- DOI: https://doi.org/10.1090/S0002-9939-1981-0612750-0
- MathSciNet review: 612750