Abstract. Let \(r: J \to J \) be a piecewise \(C^2 \) map, where \(J \) is an interval, satisfying \(\inf|r'| > 1 \). An upper bound for the number of independent absolutely continuous measures invariant under \(r \) is presented.

Introduction. Let \(J = [a, b] \) be an interval, \(\mathcal{B} \) the Lebesgue measurable subsets of \(J \), and \(\lambda \) the Lebesgue measure on \(J \). Let \(r: J \to J \) be a piecewise \(C^2 \) transformation satisfying \(\inf|\tau'(x)| > 1 \) where the derivative exists. In [1] it is shown that \(\tau \) admits an absolutely continuous invariant measure \(\mu \), i.e., \(\mu(A) = \mu(\tau^{-1}(A)) \) for all \(A \in \mathcal{B} \), and

\[
\mu(A) = \int_A f \, d\lambda,
\]

where we refer to \(f \) as the density invariant under \(\tau \). Clearly \(f > 0 \) and \(f \in \mathcal{C}_1 \), the space of integrable functions on \(J \).

Let \(\mathcal{F}_r \) denote the space of densities invariant under \(\tau \) and \(\{a_1, a_2, \ldots, a_k\} \) those points in \(J \) where \(\tau' \) does not exist. The main result of [2] asserts that \(\dim \mathcal{F}_r < k \).

In fact it is very easy to establish a better bound. Let \(a = b_0 < b_1 < \cdots < b_m < b_{m+1} = b \) be the partition of \(J \) such that \(\tau \) is continuous and monotonic on each interval \((b_{j-1}, b_j) \). Clearly \(m < k \), and \(\dim \mathcal{F}_r < m \). In the special case where \(\tau \) is continuous on \(J \), the total number of peaks and valleys in the graph of \(\tau \) constitutes an upper bound for \(\dim \mathcal{F}_r \).

In §3 of [3] a still better bound is established for \(\dim \mathcal{F}_r \). Let \(\{b_1, b_2, \ldots, b_m\} \) be the partition defined in the previous paragraph. For each \(1 < j < m \), define the pair

\[
\left\langle u_j, v_j \right\rangle = \left\langle \tau(b_j^-), \tau(b_j^+) \right\rangle,
\]

where \(u_j \) is regarded as \(u_j^+ \) or \(u_j^- \) depending on whether \(\tau(a_j - e) > u_j \) or \(\tau(a_j - e) < u_j \).

Two pairs \(\left\langle u_i, v_i \right\rangle \) and \(\left\langle u_j, v_j \right\rangle \) are said to be dependent if they have one or both coordinates in common. Otherwise the pairs are independent. Let \(N_r \) denote the maximal number of independent pairs. Then Theorem 2 of [3] asserts that \(\dim \mathcal{F}_r < N_r \). In this note we suggest a modified definition of dependence and present a different bound for the number of absolutely continuous measures invariant under \(\tau \).

Received by the editors October 15, 1980.
1980 Mathematics Subject Classification. Primary 26A18; Secondary 28D05.

1 The research of this author was supported by NSERC Grant #A-9072.

© 1981 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
2. Dependence of densities. Let $\tau: J \to J$ be piecewise C^2 satisfying $\inf|\tau'(x)| > 1$ and let $\mathcal{D} = \{b_1, b_2, \ldots, b_m\}$ be the partition on which τ is piecewise continuous and monotonic. We shall say that b_i and b_j are dependent if

$$\tau(b_i - \varepsilon, b_i + \varepsilon) \cap \tau(b_j - \varepsilon, b_j + \varepsilon)$$

has positive measure for every $\varepsilon > 0$. This implies, but is not equivalent to

$$\langle \tau(b_i^-), \tau(b_i^+) \rangle \cap \langle \tau(b_j^-), \tau(b_j^+) \rangle \neq \emptyset.$$

This definition of dependence for a pair of discontinuities in \mathcal{D} is reflexive, symmetric, but not transitive. A collection $\mathcal{S} \subset \mathcal{D}$ is said to be dependent if every pair of points in this collection is dependent, and maximal if \mathcal{S} is not a proper subset of any dependent collection. Notice that two distinct maximal dependent collections may have nonempty intersection, and such a collection may consist of a single point. Thus, given $b_j \in \mathcal{D}$, there exists at least one and at most two maximal dependent collections containing b_j. In particular, when τ is continuous at b_j, there exists only one maximal dependent collection containing this point. Let H_{τ} be the number of distinct maximal dependent collections. Then, we have

Theorem. $\dim \mathcal{D}_{\tau} < H_{\tau}$.

Proof. We first show that if f_1 and f_2 are invariant with disjoint supports, then to each f_i there corresponds one maximal dependent collection S_i and $S_1 \neq S_2$. Letting $M_i = \text{spt} f_i$, it is easy to see that $\text{int} M_i$ has to contain at least one point of \mathcal{D}, say b_i. Let S_1 and S_2 be any maximal collections containing b_1' and b_2', respectively, and suppose $S_1 = S_2$. Then b_1' and b_2' are dependent. Since $\tau(M_i) \subset M_i$ a.e. [1], and $(b_1' - \varepsilon, b_1' + \varepsilon) \subset M_i$ for some $\varepsilon < 0$, the dependence of b_1' and b_2' implies

$$\lambda(M_1 \cap M_2) > \lambda[\tau(b_1' - \varepsilon, b_1' + \varepsilon) \cap \tau(b_2' - \varepsilon, b_2' + \varepsilon)] > 0.$$

This is a contradiction. Therefore, S_1 and S_2 must be distinct.

Now let $\{f_1, f_2, \ldots, f_n\}$ be a maximal set of disjoint densities invariant under τ [2]. By the preceding argument we see that there exists a 1-1 mapping from $\{f_1, \ldots, f_n\}$ into $\{S_1, \ldots, S_{H_\tau}\}$. Thus $n < H_{\tau}$. Q.E.D.

3. Examples. (a) Consider the transformation τ shown in Figure 1.

We see that $\{b_1, b_2, b_3\}$ is the unique collection which is dependent and maximal. Thus $H_{\tau} = 1$ and there exists a unique absolutely continuous measure invariant under τ. The bound from [2] is 8, since there are 8 discontinuities in τ' in $(0, 1)$.

![Figure 1](https://www.ams.org/journal-terms-of-use)
(b) Let \(\tau \) have the graph shown in Figure 2.

For each discontinuity, we give the corresponding maximal dependent collection or collections as the case may be:

- \(b_1 \): \(\{ b_1, b_3, b_5 \} \) and \(\{ b_1, b_4 \} \),
- \(b_2 \): \(\{ b_2, b_4, b_5 \} \),
- \(b_3 \): \(\{ b_1, b_2, b_5 \} \),
- \(b_4 \): \(\{ b_1, b_4 \} \) and \(\{ b_2, b_4, b_5 \} \),
- \(b_5 \): \(\{ b_1, b_3, b_5 \} \) and \(\{ b_2, b_4, b_3 \} \),
- \(b_6 \): \(\{ b_6 \} \).

There are 4 independent collections. Therefore \(\tau \) admits at most four independent invariant densities.

Notice that for this example the bound of [2] is 7, since there are 7 discontinuities of \(\tau' \) in \((0, 1)\).

REFERENCES

DEPARTMENT OF MATHEMATICS, SIR GEORGE WILLIAMS CAMPUS, CONCORDIA UNIVERSITY, MONTREAL, QUEBEC, CANADA H3G 1M8