A RESULT RELATED TO A THEOREM BY PIANIGIANI

ABRAHAM BOYARSKY\(^1\) AND GABRIEL HADDAD

Abstract. Let \(\tau: J \rightarrow J\) be a piecewise \(C^2\) map, where \(J\) is an interval, satisfying \(\inf|\tau'| > 1\). An upper bound for the number of independent absolutely continuous measures invariant under \(\tau\) is presented.

Introduction. Let \(J = [a, b]\) be an interval, \(\mathcal{B}\) the Lebesgue measurable subsets of \(J\), and \(\lambda\) the Lebesgue measure on \(J\). Let \(\tau: J \rightarrow J\) be a piecewise \(C^2\) transformation satisfying \(\inf|\tau'(x)| > 1\) where the derivative exists. In [1] it is shown that \(\tau\) admits an absolutely continuous invariant measure \(\mu\), i.e., \(\mu(A) = \mu(\tau^{-1}(A))\) for all \(A \in \mathcal{B}\), and

\[
\mu(A) = \int_A f\,d\lambda,
\]

where we refer to \(f\) as the density invariant under \(\tau\). Clearly \(f > 0\) and \(f \in L_1\), the space of integrable functions on \(J\).

Let \(\mathcal{F}_\tau\) denote the space of densities invariant under \(\tau\) and \(\{a_1, a_2, \ldots, a_k\}\) those points in \(J\) where \(\tau'\) does not exist. The main result of [2] asserts that \(\dim \mathcal{F}_\tau < k\). In fact it is very easy to establish a better bound. Let \(a = b_0 < b_1 < \cdots < b_m < b_{m+1} = b\) be the partition of \(J\) such that \(\tau\) is continuous and monotonic on each interval \((a_j, b_j)\). Clearly \(m < k\), and \(\dim \mathcal{F}_\tau < m\). In the special case where \(\tau\) is continuous on \(J\), the total number of peaks and valleys in the graph of \(\tau\) constitutes an upper bound for \(\dim \mathcal{F}_\tau\).

In §3 of [3] a still better bound is established for \(\dim \mathcal{F}_\tau\). Let \(\{b_1, b_2, \ldots, b_m\}\) be the partition defined in the previous paragraph. For each \(1 < j < m\), define the pair

\[
\langle u_j, v_j \rangle = \langle \tau(b_j^-), \tau(b_j^+) \rangle,
\]

where \(u_j\) is regarded as \(u_j^+\) or \(u_j^-\) depending on whether \(\tau(a_j - \varepsilon) > u_j\) or \(\tau(a_j - \varepsilon) < u_j\).

Two pairs \(\langle u_i, v_i \rangle\) and \(\langle u_j, v_j \rangle\) are said to be dependent if they have one or both coordinates in common. Otherwise the pairs are independent. Let \(N_\tau\) denote the maximal number of independent pairs. Then Theorem 2 of [3] asserts that \(\dim \mathcal{F}_\tau < N_\tau\). In this note we suggest a modified definition of dependence and present a different bound for the number of absolutely continuous measures invariant under \(\tau\).

\(\footnotesize{\text{Received by the editors October 15, 1980.}}\)

\(\footnotesize{\text{1980 Mathematics Subject Classification. Primary 26A18; Secondary 28D05.}}\)

\(\footnotesize{\text{1 The research of this author was supported by NSERC Grant #A-9072.}}\)

\(\footnotesize{© 1981 American Mathematical Society}\)

\(\footnotesize{0002-9939/81/0000-0356/\$01.75}\)

538
2. Dependence of densities. Let \(\tau: J \to J \) be piecewise \(C^2 \) satisfying \(\inf |\tau'(x)| > 1 \) and let \(\mathcal{P} = \{ b_1, b_2, \ldots, b_m \} \) be the partition on which \(\tau \) is piecewise continuous and monotonic. We shall say that \(b_i \) and \(b_j \) are dependent if
\[
\tau(b_i - e, b_i + e) \cap \tau(b_j - e, b_j + e)
\]
has positive measure for every \(e > 0 \). This implies, but is not equivalent to
\[
\langle \tau(b_i^-), \tau(b_j^+) \rangle \cap \langle \tau(b_i^+), \tau(b_j^-) \rangle \neq \emptyset.
\]
This definition of dependence for a pair of discontinuities in \(\mathcal{P} \) is reflexive, symmetric, but not transitive. A collection \(S \subset \mathcal{P} \) is said to be dependent if every pair of points in this collection is dependent, and maximal if \(S \) is not a proper subset of any dependent collection. Notice that two distinct maximal dependent collections may have nonempty intersection, and such a collection may consist of a single point. Thus, given \(b_j \in \mathcal{P} \), there exists at least one and at most two maximal dependent collections containing \(b_j \). In particular, when \(\tau \) is continuous at \(b_j \), there exists only one maximal dependent collection containing this point. Let \(H_\tau \) be the number of distinct maximal dependent collections. Then, we have

Theorem. \(\dim \mathcal{F}_\tau < H_\tau \).

Proof. We first show that if \(f_1 \) and \(f_2 \) are invariant with disjoint supports, then to each \(f_i \) there corresponds one maximal dependent collection \(S_i \) and \(S_1 \neq S_2 \). Letting \(M_i = \text{spt} f_i \), it is easy to see that \(\text{int} M_i \) has to contain at least one point of \(\mathcal{P} \), say \(b'_j \). Let \(S_1 \) and \(S_2 \) be any maximal collections containing \(b'_1 \) and \(b'_2 \), respectively, and suppose \(S_1 = S_2 \). Then \(b'_1 \) and \(b'_2 \) are dependent. Since \(\tau(M_i) \subset M_i \) a.e. \([1]\), and \((b'_1 - e, b'_1 + e) \subset M_i \) for some \(e < 0 \), the dependence of \(b'_1 \) and \(b'_2 \) implies
\[
\lambda(M_1 \cap M_2) > \lambda[\tau(b'_1^-, b'_1 + e) \cap \tau(b'_2^- - e, b'_2 + e)] > 0.
\]
This is a contradiction. Therefore, \(S_1 \) and \(S_2 \) must be distinct.

Now let \(\{ f_1, f_2, \ldots, f_n \} \) be a maximal set of disjoint densities invariant under \(\tau \) \([2]\). By the preceding argument we see that there exists a 1-1 mapping from \(\{ f_1, \ldots, f_n \} \) into \(\{ S_1, \ldots, S_{H_\tau} \} \). Thus \(n < H_\tau \). Q.E.D.

3. Examples. (a) Consider the transformation \(\tau \) shown in Figure 1.

![Figure 1](image)

We see that \(\{ b_1, b_2, b_3 \} \) is the unique collection which is dependent and maximal. Thus \(H_\tau = 1 \) and there exists a unique absolutely continuous measure invariant under \(\tau \). The bound from \([2]\) is 8, since there are 8 discontinuities in \(\tau' \) in \((0, 1)\).
(b) Let τ have the graph shown in Figure 2.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{Figure 2}
\end{figure}

For each discontinuity, we give the corresponding maximal dependent collection or collections as the case may be:

- b_1: $\{b_1, b_3, b_3\}$ and $\{b_1, b_4\}$,
- b_2: $\{b_2, b_4, b_3\}$,
- b_3: $\{b_1, b_3, b_3\}$,
- b_4: $\{b_1, b_4\}$ and $\{b_2, b_4, b_3\}$,
- b_5: $\{b_1, b_3, b_3\}$ and $\{b_2, b_4, b_3\}$,
- b_6: $\{b_6\}$.

There are 4 independent collections. Therefore τ admits at most four independent invariant densities.

Notice that for this example the bound of [2] is 7, since there are 7 discontinuities of τ' in $(0, 1)$.

\textbf{References}

\textbf{Department of Mathematics, Sir George Williams Campus, Concordia University, Montreal, Quebec, Canada H3G 1M8}