EXTENSIONS OF PURE POSITIVE FUNCTIONALS
ON BANACH *-ALGEBRAS

R. S. DORAN AND WAYNE TILLER

ABSTRACT. A known extension theorem for pure states on a Banach *-algebra with
isometric involution is shown to hold for the wider class of Banach *-algebras with
arbitrary, possibly discontinuous, involutions.

Let \(A \) be a Banach *-algebra with isometric involution and bounded approxi-
mate identity \(\{ e_a \} \), and \(B \) a closed *-subalgebra of \(A \) containing \(\{ e_a \} \). In [3] G.
Maltese proved that if \(f \) is a pure state on \(B \), then \(f \) admits a pure state extension to
\(A \) if and only if \(f \) admits a positive linear extension to \(A \). Our purpose here is to
extend this result to Banach *-algebras with arbitrary, possibly discontinuous,
involutions.

For basic definitions and results from the theory of Banach *-algebras and their
representations see [1], [2], or [4].

The following lemma handles the case when the algebra \(A \) contains an identity.

Lemma 1. Let \(A \) be a unital Banach *-algebra, \(B \) a closed *-subalgebra of \(A \)
containing the identity \(e \), and suppose that \(f \) is a pure positive linear functional on \(B \).
Then \(f \) can be extended to a pure positive linear functional on \(A \) if and only if \(f \) has a
positive linear extension to \(A \).

Proof. We may assume without loss of generality that \(f(e) = 1 \). Indeed, if \(\lambda > 0 \),
then \(\lambda f \) is pure and positive if \(f \) is pure and positive. Our proof will be given in two
steps:
I. \(A \) has continuous involution;
II. \(A \) has arbitrary involution.

Proof of I. Let \(P_A \) denote the set of positive functionals \(g \) on \(A \) satisfying
\(g(e) = 1 \). Define \(P_B \) similarly. It is well known that a functional in \(P_A \) (or \(P_B \)) is
pure (pure on \(B \)) if and only if it is an extreme point of \(P_A \) (\(P_B \)). Suppose, now, that
\(f \) has a positive linear extension to \(A \), and set \(X = \{ g \in P_A : g|_B = f \} \); i.e., \(X \) is the
set of all positive extensions of \(f \). Then \(X \) is nonempty by assumption, and it is
clearly convex. We show that \(X \) is compact in the relative weak *-topology. By the
Banach-Alaoglu theorem it suffices to show that \(X \) is weak *-closed and norm
bounded. Suppose that \(\{ g_a \} \) is a net in \(X \) and that \(g_a \to g \). Then by the definition
of the weak *-topology, \(g_a(x) \to g(x) \) for every \(x \in A \); thus, if \(x \in B \), then
\(g(x) = \lim_{a} g_a(x) = \lim_{a} f(x) = f(x) \) which implies \(g \in X \). Therefore, \(X \) is weak \(^*\)-closed. Now let \(g \in X \) be arbitrary; since \(x \to x^* \) is continuous there exists \(k > 0 \) such that \(\|x^*\| < k\|x\| \) for all \(x \) in \(A \). Then, by [4, pp. 214, 219],
\[
|g(x)|^2 < g(e)g(x^*x) < g(e)\nu(x^*x) < g(e)\|x^*x\| < g(e)k\|x\|^2 = k\|x\|^2,
\]
where \(\nu(\cdot) \) denotes the spectral radius. Hence \(\|g\| < \sqrt{k} \) and \(X \) is norm bounded.

The Krein-Milman theorem now implies that \(X \) has extreme points. We denote the set of extreme points of \(X \), \(P_A \), and \(P_B \) by \(E(X) \), \(E(P_A) \), and \(E(P_B) \) respectively. Verification of the equality \(E(X) = X \cap E(P_A) \) will complete the proof of Part I. Our proof follows that given in [3, p. 503].

It is clear that \(X \cap E(P_A) \subseteq E(X) \). Let \(g \in E(X) \) and suppose \(g = \frac{1}{2}(\phi + \psi) \), where \(\phi, \psi \in P_A \). Then, taking restrictions, we obtain \(f = \frac{1}{2}(\phi|_B + \psi|_B) \). But \(\phi|_B \) and \(\psi|_B \) are in \(P_B \), and since \(f \in E(P_B) \), it follows that \(f = \phi|_B = \psi|_B \) which implies that \(\phi \) and \(\psi \) are in \(X \). Since \(g \) is an extreme point of \(X \) we have \(g = \phi = \psi \) which means that \(g \in E(P_A) \). Hence \(E(X) \subseteq X \cap E(P_A) \).

Proof of II. We now allow the involution to be arbitrary. If \(J \) denotes the Jacobson radical of \(A \), then \(A/J \) is a semisimple Banach \(^*\)-algebra which, by Johnson's uniqueness of the norm theorem [1, p. 130], has continuous involution. Hence the closure \((B + J)/J^-\) in \(A/J \) of the \(^*\)-subalgebra \((B + J)/J\) is a Banach \(^*\)-subalgebra of \(A/J \) containing the identity \(e + J \).

Let \(f' \) be the positive extension of \(f \) to \(A \), and define a function \(\tilde{f}' : A/J \to \mathbb{C} \) by \(\tilde{f}'(x + J) = f'(x) \). We note that \(\tilde{f}' \) is well defined since \(f' \) is representable [4, p. 216] and \(J \) is contained in the reducing ideal. Furthermore, \(\tilde{f}' \) is linear and positive and is therefore continuous since \(A/J \) has an identity. Moreover, if \(b \in B \), then \(\tilde{f}'(b + J) = f'(b) = f(b) \). Let
\[
\tilde{f} = \tilde{f}'|_{((B + J)/J)^-}.
\]
Then \(\tilde{f} \) is a continuous positive linear functional on \((B + J)/J^-\) and \(\tilde{f}(b + J) = f(b) \) for every \(b \in B \). We assert that \(\tilde{f} \) is pure. Indeed, let \(\tilde{g} \) be an arbitrary positive functional on \((B + J)/J^-\) satisfying \(\tilde{g} \leq \tilde{f} \). Then \(\tilde{g}(b*b + J) \leq \tilde{f}(b*b + J) = f(b*b + J) \) for every \(b \in B \). Define a positive functional \(g \) on \(B \) by \(g(b) = \tilde{g}(b + J) \). Clearly \(g \leq f \), and since \(f \) is pure, it follows that \(g = \lambda f \), where \(0 < \lambda < 1 \). Hence, \(\tilde{g} = \lambda \tilde{f} \) on \((B + J)/J\). But \(\tilde{g} \) and \(\tilde{f} \) are both continuous, and thus it follows that \(\tilde{g} = \lambda \tilde{f} \) on all of \((B + J)/J^-\); therefore, \(\tilde{f} \) is pure.

By part I, \(\tilde{f} \) has a pure positive extension to \(A/J \) which we denote by \(h \). Define \(h' : A \to \mathbb{C} \) by \(h'(x) = h(x + J) \). Then \(h' \) is a positive functional on \(A \) and if \(b \in B \), then \(h'(b) = h(b + J) = \tilde{f}(b + J) = f(b) \). It remains only to show that \(h' \) is pure. Let \(g' \) be a positive functional on \(A \) satisfying \(g' < h' \). Then \(g'(x^*x) < h'(x^*x) = h(x^*x + J) \). Define a functional \(g \) on \(A/J \) by \(g(x + J) = g'(x) \); \(g \) is well defined since \(g' \) is representable. Clearly \(g \) is positive and \(g < h \); but \(h \) is pure, so \(g = \lambda h \) which implies \(g' = \lambda h' \). Hence \(h' \) is pure and the proof is complete.

The next lemma is well known from Banach \(^*\)-algebras with isometric involution (see [2, 2.2.10, p. 34]). We give a simple proof for the case of an arbitrary involution. In what follows we assume that all bounded approximate identities are bounded by one.
Lemma 2. Let A be a Banach *-algebra with bounded approximate identity (e_a), a nondegenerate *-representation of A on a Hilbert space H, and let I denote the identity operator on H. Then $\lim_a \pi(e_a) = I$, where the limit is in the strong operator topology.

Proof. For each $x \in A$ we have $\|\pi(e_a) - \pi(x)\| < \|\pi\| \cdot \|e_a x - x\| \to 0$. Hence $\|\pi(e_a)\pi(x) - \pi(x)\| \to 0$ for every $x \in A$ and every $\xi \in H$. Since π is nondegenerate, the set $\pi(A)H$ is dense in H. Now let $\eta \in H$ be arbitrary, $\varepsilon > 0$, and set $M = \max(\|\pi\|, 1)$. Then there exists $\xi \in H$ and $x \in A$ such that $\|\pi(x)\xi - \eta\| < \varepsilon/3M$ and there exists a_0 such that $\alpha > a_0$ implies $\|\pi(e_a)\pi(x)\xi - \pi(x)\xi\| < \varepsilon/3$.

Then
\[
\|\pi(e_a)\eta - \eta\| < \|\pi(e_a)\eta - \pi(e_a)\pi(x)\xi\| + \|\pi(e_a)\pi(x)\xi - \pi(x)\xi\| + \|\pi(x)\xi - \eta\| < \|\pi\| \cdot \|e_a\| \cdot \|\eta - \pi(x)\xi\| + \varepsilon/3 + \varepsilon/3M < \varepsilon.
\]
completing the proof.

Theorem 3. Let A be a Banach *-algebra with bounded approximate identity (e_a) and suppose B is a closed *-subalgebra of A containing (e_a). Let f be a pure positive linear functional on B admitting a positive linear extension f' to A. Then f has a pure positive linear extension to A.

Proof. Since f and f' are representable, we can write $f(b) = (\pi(b)\xi|\xi)$ and $f'(x) = (\pi'(x)\xi'|\xi')$ for all $b \in B$, $x \in A$, and suitable vectors ξ and ξ' in the respective spaces of π and π'. Then, by Lemma 2, $\|\xi\| = \|\xi\| = \lim_a \pi(e_a) = \lim_a \pi'(e_a) = \|\xi\| = \|\xi\|$. Let A_e and B_e denote the Banach *-algebras obtained from A and B respectively by adjoining identities. Define *-representations π' and π of A_e and B_e respectively by $\pi'(x, \lambda) = \pi'(x) + \lambda I$ and $\pi((b, \lambda)) = \pi(b) + \lambda I$, where I denotes the identity operator. Let $\tilde{f}'(x, \lambda) = (\pi'(x, \lambda)\xi'|\xi')$ and $\tilde{f}(b, \lambda) = (\pi(b, \lambda)\xi|\xi)$. Then \tilde{f}' and \tilde{f} are positive functionals on A_e and B_e respectively and
\[
\tilde{f}'(b, \lambda) = (\pi'(b, \lambda)\xi'|\xi') = (\pi(b)\xi|\xi') + \lambda(\xi'|\xi') = (\pi(b)\xi|\xi') + \lambda(\xi'|\xi')
\]
for every $(b, \lambda) \in B_e$. Now f pure implies that π is irreducible [2, 2.5.4, p. 43]; hence π' is irreducible and thus \tilde{f}' is pure. By Lemma 1, \tilde{f} has a pure positive extension, say g, to A_e. Hence there exists an irreducible *-representation π_g and a cyclic vector ξ_c such that $g((x, \lambda)) = (\pi_g((x, \lambda))\xi_c|\xi_c)$. So $\pi_{g|A}$ is also irreducible, and therefore the functional g_A defined on A by $g_A(x) = (\pi_{g|A}(x)\xi_c|\xi_c)$ is a pure positive functional on A. Moreover, $g_A(b) = g((b, 0)) = \tilde{f}'(b, 0) = (\pi'(b, 0)\xi|\xi) = \pi(b)\xi|\xi = f(b)$.

REFERENCES

Department of Mathematics, Texas Christian University, Fort Worth, Texas 76129