ELEMENTARY PROOF OF THE RUDIN-CARLESON
AND THE F. AND M. RIESZ THEOREMS

RAOUF DOSS

Abstract. A very elementary proof is given of the theorem that on a set of
measure zero on T, any continuous function is equal to a continuous function of
analytic type. The same elementary method proves that a measure of analytic type
is absolutely continuous.

A complex Borel measure μ on T, in particular an $f \in L^1(T)$, is said to be of
analytic type if

$$a_n = (2\pi)^{-1} \int_T e^{-int} d\mu(t) = 0, \quad n = -1, -2, \ldots.$$

The theorems mentioned in the title are:

RUDIN-CARLESON Theorem. Let F be a closed subset of T of Lebesgue measure
zero. If φ is a continuous function on F, then there is a continuous function f, of
analytic type, such that

$$f(t) = \varphi(t), \quad t \in F,$$

$$\sup_{t \in F} |f(t)| \leq M \sup_{t \in F} |\varphi(t)| \quad (\ast)$$

where M is a constant. (Rudin proves that $M = 1$. See [8] and [1].)

The First F. and M. Riesz Theorem. If the function f in $L^1(T)$ is of analytic type
and if f vanishes on a set S^* of positive measure, then $f = 0$.

The Second F. and M. Riesz Theorem. If a complex Borel measure μ on T is of
analytic type, then μ is absolutely continuous (with respect to Lebesgue measure). See
[7].

The proofs of these theorems most often use boundary values of functions
analytic in the unit disc and the theory of H^p-spaces. For the Second F. and M.
Riesz Theorem, for example, see three variants in [3], [5] and [9]; other proofs of
that theorem use Hilbert-space theory: see e.g. [2] and [4]; a direct short proof is
given in [6].

The aim of the present paper is to present a method which gives an elementary
proof of all the above theorems.

Received by the editors August 7, 1980; presented to the "Séminaire d'Analyse Harmonique

1980 Mathematics Subject Classification. Primary 42A68, 42A72; Secondary 26A15.

© 1981 American Mathematical Society
0002-9939/81/0000-0367/$02.00
Lemma. Let F be a closed subset of T of measure zero and φ a continuous function on F. Given $\varepsilon > 0$ and an open set $G \supseteq F$ there is a continuous function g of analytic type such that

\[
\sup_{t \in F} |g(t) - \varphi(t)| < \varepsilon \sup_{t \in F} |\varphi(t)|, \\
|g(t)| < \varepsilon, \quad t \notin G, \\
\sup_{t \in T} |g(t)| < 3 \sup_{t \in F} |\varphi(t)|.
\]

Proof. Without loss of generality we may assume that $\sup_{t \in F} |\varphi(t)| = 1$ and also that φ is a trigonometric polynomial

\[
\varphi(t) = \sum_{|k| < m} a_k e^{ikt}
\]

such that

\[
|\varphi(t)| < \varepsilon/3, \quad t \notin G.
\]

Let $e^{-A} = \varepsilon$ and let h be a continuous function on T, lying between $-2A$ and 2ε, such that

\[
|h(t) + 2A| < \varepsilon, \quad t \notin F.
\]

Since $m(F) = 0$ we may take $\|h\|_1$ arbitrarily small and hence we may suppose $\tilde{h}(k) = 0$, $|k| < m$. Take a Fejér sum p of h such that $|p(t) + 2A| < \varepsilon$, $t \in F$. We write

\[
p(t) = \sum_{k < -m} \beta_k e^{ikt} + \sum_{k > m} \beta_k e^{ikt} = p^-(t) + p^+(t)
\]

where

\[
p^+(t) = \sum_{k > m} \beta_k e^{ikt}.
\]

We have $\Re(p^+) = p/2 < \varepsilon$. Put now

\[
g(t) = \varphi(t)[1 - e^{p^+(t)}].
\]

The expansion of $[1 - e^{p^+(t)}]$ is of the form $\sum_{k > m} \gamma_k e^{ikt}$. The function g is therefore continuous of analytic type. We have

\[
|g(t) - \varphi(t)| = |\varphi(t)||1 - e^{p^+(t)}| < e^{p/2} < e^{2A + \varepsilon} < 2\varepsilon \quad (t \in F).
\]

Moreover

\[
|g(t)| < |\varphi(t)| |1 - e^{p^+(t)}| < 1 + \varepsilon < 3 \quad (t \in T).
\]

\[
|g(t)| < (\varepsilon/3)3 = \varepsilon \quad (t \notin G).
\]

The Lemma is now proved.

Proof of the Rudin-Carleson Theorem. $\varepsilon < \frac{1}{4}$ being fixed, denote by $\gamma(\varphi)$ any continuous function of analytic type associated to φ by the Lemma. Starting with $\varphi_0 = \varphi$ we put $\varphi_{m+1} = \varphi_m - \gamma(\varphi_m)$. We have

\[
\sup_{F} |\varphi_{m+1}| < \varepsilon \sup_{F} |\varphi_{m}| < \cdots < \varepsilon^{m+1} \sup_{F} |\varphi_0|, \\
\sup_{F} |\gamma(\varphi_m)| < 3 \sup_{F} |\varphi_m| < 3\varepsilon^m \sup_{F} |\varphi_0|.
\]
The series $\sum_{m=0}^{\infty} \gamma(q_m)$ is therefore uniformly convergent on T; its sum f is of analytic type and satisfies the relation $f(t) = \varphi(t)$ ($t \in F$). Moreover

$$\sup_T |f(t)| < 3(1 - \epsilon)^{-1} \sup_F |\varphi_0| < 4 \sup_F |\varphi|.$$

The theorem is now proved.

Remark. The factor M in the estimate (*) can easily be reduced to $1 + \epsilon$. In fact, given an open set $G \supset F$ and using (**) we can manage to have

$$|f(t)| < \epsilon \quad (t \not \in G).$$

By the continuity of f, there is an open set $G' \supset G$ such that $G' \subset G$ and $|f(t)| < 1 + \epsilon$ ($t \in G'$). Thus we can have

$$|f(t)| > 1 + \epsilon \quad \text{only if } t \in G \setminus G'.$$

Starting with G' we get f' coinciding with φ on F, bounded by 4 where $|f'(t)| > 1 + \epsilon$ only if $t \in G' \setminus G''$ for an appropriate $G'' \supset G'$. Observing that the sets $G \setminus G', G' \setminus G'', G'' \setminus G''', \ldots$ are disjoint and taking an arithmetic mean we get a function bounded everywhere by $1 + 2\epsilon$.

Proof of the First F. and M. Riesz Theorem. It is sufficient to prove that

$$a_0 = (2\pi)^{-1} \int_T f(t) \, dt = 0$$

for, applying the same process to the function $e^{-\varphi f(t)}$, we deduce $a_1 = 0$, and next $a_2 = 0, \ldots$ and finally $f = 0$. We shall follow the same pattern of proof as for the Rudin-Carleson Theorem.

Denote by S the set \{ $t \in T$: $f(t) \neq 0$ \}. Given $\epsilon > 0$ let $e^{-A} = \epsilon$ and let h be a bounded real function equal to $-2A$ on S and such that $\hat{h}(0) = 0$. There are such functions since $m(S^*) > 0$. Let p_n be the sequence of Fejér polynomials of h. We write as before

$$p_n(t) = \sum_{k<0} \beta_k e^{ikt} + \sum_{k>0} \beta_k e^{ikt} = p_n^-(t) + p_n^+(t)$$

where

$$p_n^+(t) = \sum_{k>0} \beta_k e^{ikt}.$$

Then, boundedly,

$$\Re(p_n^+(t)) = \frac{1}{2} p_n(t) \to \frac{1}{2} h(t) = -A \quad \text{a.e. on } S.$$

Put now

$$g_n(t) = f(t)[1 - e^{2\pi A(t)}].$$

The expansion of g_n is of the form $\sum_{k>0} \gamma_k e^{ikt}$ and therefore $\int g_n \, dt = 0$. Hence

$$|2\pi a_0| = \left| \int f \right| = \left| \int (f - g_n) \right| < \left| \int e^{2\pi A} \right|$$

$$< \int_S |f| e^{\pi A} \to e^{-A} \int |f| = \epsilon \|f\|_1.$$

Since ϵ is arbitrary we have $a_0 = 0$ and the theorem is proved.
Proof of the Second F. and M. Riesz Theorem. We may assume $a_0 = 0$. Let F be a closed set of measure zero. Choose a decreasing sequence of open sets $G_n \supset F$ such that $\cap G_n = F$, and by the Lemma a sequence of functions g_n of analytic type, such that

$$
|1 - g_n(t)| < 1/n, \quad t \in F, \\
|g_n| < 3; \quad |g_n(t)| < 1/n \quad \text{for } t \not\in G_n.
$$

Then, boundedly, $g_n \to \chi_F$ (characteristic function of F). Hence $0 = \int g_n \, d\mu \to \int \chi_F \, d\mu = \mu(F)$. This proves that μ is absolutely continuous.

The author would like to thank Y. Katznelson for a useful conversation.

References

7. F. Riesz and M. Riesz, Über die Randwerte einer analytischen Funktion, 4e Congrès des Mathématiciens Scandinaves (Stockholm, 1916), pp. 27–44.

Department of Mathematics, State University of New York, Stony Brook, New York 11794