CONTINUITY OF THE SPECTRUM AND SPECTRAL RADIUS

GERARD J. MURPHY

Abstract. Let A be a Banach algebra containing an element x. Topological
conditions on the spectrum of x are given which are necessary and sufficient to
ensure the continuity of the spectrum or spectral radius at x.

1. Introduction. In this paper C denotes the field of complex numbers, and K the
metric space of nonempty compact subsets of C endowed with the Hausdorff
metric Δ. If $K_1, K_2 \subseteq K$, then

$$\Delta(K_1, K_2) = \max \left(\sup_{\lambda \in K_2} d(\lambda, K_1), \sup_{\lambda \in K_1} d(\lambda, K_2) \right)$$

where $d(\lambda, K_i) = \inf_{\mu \in K_i} |\lambda - \mu|$.

A will denote a Banach algebra, which we will always assume is unital without
loss of generality. For $x \in A$, $\sigma(x)$ and $r(x)$ denote the spectrum of x and spectral
radius of x respectively. We are interested in determining the points in A at which
the spectrum $\sigma: A \to K$, $x \to \sigma(x)$ or the spectral radius $r: A \to [0, \infty)$, $x \to r(x)$ are continuous. Newburgh [5] initiated the study of this problem in 1951. A famous
elementary example, due to Kakutani [4, pp. 248–249], shows that the spectral radius is
discontinuous at certain elements in the C^*-algebra $B(H)$ of all bounded linear
operators on a separable Hilbert space H. Recently Conway and Morrel [3] have
given necessary and sufficient conditions for the continuity of σ and r at T in
$B(H)$. Their results depend on a deep theorem of Apostol and Morrel [1, Theorem
3.1] a special case of which we now state, as it will be used in the sequel.

Theorem 1. If T is a normal operator on H, and S is a closed subset of C which
meets all the components of $\sigma(T)$, then there is a sequence T_n in $B(H)$ converging to
T in norm for which $\sigma(T_n) \subseteq S$ ($n > 0$).

Let A be a Banach algebra, $x \in A$, and U an open subset of C. There are a
number of results, due essentially to Newburgh [5] which we shall need later.

Theorem 2. If $U \supseteq \sigma(x)$, then there exists $\delta > 0$ such that $\|y - x\| < \delta$ implies
that $U \supseteq \sigma(y)$.

(This property of σ is referred to as upper semicontinuity.)
Theorem 3. If U contains a component of $\sigma(x)$, then there exists $\delta > 0$ such that $\|y - x\| < \delta$ implies that U contains a component of $\sigma(y)$.

It is trivial to see that r is always upper semicontinuous, and that, since $r(x) = \Delta(\sigma(x), \{0\})$, if σ is continuous at x, so is r. An interesting result due to Aupetit [2] states that r is uniformly continuous on A if and only if $A/\text{rad}(A)$ is commutative ($\text{rad}(A)$ denotes the Jacobson radical of A).

2. Continuity of r and σ. Throughout this section A is a (unital) Banach algebra, $x \in A$, and T a normal operator on a separable infinite dimensional Hilbert space H. Let $K \in K$, and put $\alpha(K) = \sup \{\inf_{\omega \in \omega}|\lambda|: \omega$ is a component of $K\}$, and $r(K) = \sup_{\lambda \in K}|\lambda|$. So $r(K) > \alpha(K)$. We assume $\sigma(T) = K$.

Definition 1. The set K is an r-set (resp. σ-set) if for every Banach algebra A, and x in A with $\sigma(x) = K$, the spectral radius r (resp. the spectrum σ) is continuous at x in \mathbb{C}. A well-known result of Newburgh [5] can be restated by saying that if K is totally disconnected it is a σ-set.

(Note that this is true for the spectrum $\sigma(S)$ of a compact or Riesz operator S on a Banach space X, so that σ is continuous at S in the Banach algebra $B(X)$ of bounded linear operators on X.)

Assume K is a member of K.

Proposition 1. The following are equivalent statements:

(i) K is an r-set;
(ii) $\alpha(K) = r(K)$;
(iii) T is a point of continuity of r in $B(H)$.

Proof. (ii) \Rightarrow (i). If $\alpha(K) = r(K)$ and $K = \sigma(x)$ for x in some Banach algebra A then, for any $\varepsilon > 0$, let $U = \{\lambda \in C: |\lambda| > r(x) - \varepsilon\}$. As there is a component ω of K with $\inf_{\lambda \in \omega}|\lambda| > \alpha(K) - \varepsilon = r(x) - \varepsilon$, so $U \supseteq \omega$, and hence by Theorem 3, there exists $\delta > 0$ such that $\|y - x\| < \delta$ implies that U contains a component of $\sigma(y)$. Therefore $r(y) > r(x) - \varepsilon$. This proves the lower semicontinuity of r at x. As upper semicontinuity is automatic, it follows that r is continuous at x. Thus we have shown that K is an r-set.

(i) \Rightarrow (iii) by definition.

(iii) \Rightarrow (ii). Assume that (iii) holds and that $\alpha(K) < r(K)$. (We can always construct a normal T with $\sigma(T) = K$, simply by choosing a diagonal operator whose diagonal entries are dense in K.) Now every component ω of K meets the set $\Delta = \{\lambda \in C: |\lambda| < \rho\}$ where ρ is chosen such that $\alpha(K) < \rho < r(K)$. Hence by Theorem 1, there is a sequence T_n in $B(H)$ converging to T in norm with $\sigma(T_n) \subseteq \Delta$. Thus $r(T_n) < \rho$ ($n > 0$). But this is impossible by the continuity of r at T. This contradiction shows $\alpha(K) = r(K)$, and so (iii) \Rightarrow (ii). The proof of implication (iii) \Rightarrow (ii) is a simplification of a special case of the proof of Theorem 2.6 in [3].

For $K \in K$, let $K_0 = \{\lambda \in K: \text{the component of } \lambda \text{ in } K = \{\lambda\}\}$. (Thus $K = K_0$ if and only if K_0 is totally disconnected.) As before, T is a normal operator on H and $\sigma(T) = K$. K_0 denotes the closure of K_0 in C.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proposition 2. The following are equivalent statements:

(i) \(K \) is a \(\sigma \)-set;

(ii) \(K = \overline{K_0} \);

(iii) for each \(\varepsilon > 0 \) and for each \(\lambda \in K \), \(B(\lambda, \varepsilon) = \{ \mu \in \mathbb{C} : |\mu - \lambda| < \varepsilon \} \) contains a component of \(K \);

(iv) \(T \) is a point of continuity of \(\sigma \) in \(B(H) \).

Proof. That (iii) \(\Rightarrow \) (ii) follows from some elementary topology. (This fact is also pointed out in [3, p. 19].)

(ii) \(\Rightarrow \) (i). Let \(A \) be any Banach algebra, and suppose that \(\sigma(x) = K \). Then for each \(\varepsilon > 0 \), there exist \(\lambda_1, \ldots, \lambda_n \in K \) such that \(B(\lambda_i, \varepsilon/2) \cup \cdots \cup B(\lambda_n, \varepsilon/2) \supseteq K \). Hence as \(K_0 = K \), there exist \(\mu_i \in K_0 \) (\(i = 1, \ldots, n \)) such that \(|\lambda_i - \mu_i| < \varepsilon/2 \). Thus there exist \(\delta_i > 0 \) (\(i = 1, \ldots, n \)) such that \(\|y - x\| < \delta_i \) implies that \(B(\lambda_i, \varepsilon/2) \) contains a component of \(\sigma(y) \). This follows from Theorem 3, and the fact that \(\{ \mu_i \} \) is a component of \(\sigma(x) = K \). Thus if \(\delta = \min_{1 \leq i \leq n} \delta_i \) then for \(\|y - x\| < \delta \) and \(\lambda \in \sigma(x) \) we have \(|\lambda - \lambda_i| < \varepsilon/2 \) for some \(i \), \(1 < i \leq n \), and, for each \(i \), \(|\lambda_i - \lambda_i'| < \varepsilon/2 \) for some \(\lambda_i' \) in \(\sigma(y) \), as \(B(\lambda_i, \varepsilon/2) \) contains a component of \(\sigma(y) \).

Hence \(|\lambda - \lambda_i'| < \varepsilon \), or \(d(\lambda, \sigma(y)) < \varepsilon \). Thus \(\sup_{\lambda \in \sigma(x)} d(\lambda, \sigma(y)) < \varepsilon \) for \(\|y - x\| < \delta \).

But by the upper semicontinuity property, there exists \(\delta_0 < \delta, \delta_0 > 0 \), such that \(\|y - x\| < \delta_0 \) implies that \(\sup_{\lambda \in \sigma(y)} d(\lambda, \sigma(x)) < \varepsilon \). Thus \(\Delta(\sigma(y), \sigma(x)) < \varepsilon \) for \(\|y - x\| < \delta_0 \), showing that \(\sigma \) is continuous at \(x \). Hence \(K \) is a \(\sigma \)-set. (This argument is a generalization of one due to Newburgh [5] proving that totally disconnected sets are \(\sigma \)-sets.)

(i) \(\Rightarrow \) (iv) by definition.

(iv) \(\Rightarrow \) (iii). Assume that \(T \) is a point of continuity of \(\sigma \) and let \(\varepsilon > 0 \) and \(\lambda \in K = \sigma(T) \). If \(B(\lambda, \varepsilon) \) does not contain a component of \(K \), then \(S = \mathbb{C} \setminus B(\lambda, \varepsilon) \) is a closed set meeting all the components of \(\sigma(T) \), so by Theorem 1, there is a sequence \(T_n \) in \(B(H) \) with \(T_n \) converging to \(T \) in norm, but \(\sigma(T_n) \subseteq S \) (\(n > 0 \)). Hence \(\Delta(\sigma(T_n), \sigma(T)) \to d(\lambda, \sigma(T)) \geq \varepsilon \) (\(n \to 0 \)). But as \(\sigma \) is continuous at \(T \), \(\Delta(\sigma(T_n), \sigma(T)) \to 0 \) (\(n \to \infty \)). This contradiction shows \(B(\lambda, \varepsilon) \) contains a component of \(\sigma(T) \), and so (iv) implies (iii). (This result is a simplified proof of a special case of Theorem 3.1 in [3].)

Finally, it is easy to exhibit \(K \in \mathbb{K} \) such that \(K_0 \neq K = \overline{K_0} \) and to exhibit \(K \) such that \(\sigma(K) = r(K) \) but no component of \(K \) lies on the circle \(\{ \lambda : |\lambda| = r(K) \} \). (For example take \(K = \{ 1 - 1/n : n > 1 \} \cup \{ x + iy : x + y = 1; x, y > 0 \} \).)

References

1. C. Apostol and B. Morrel, On uniform approximation of operators by simple models, Indiana Univ.
2. B. Aupetit, Characterisation spectrale des algèbres de Banach commutatives, Pacific J. Math. 63
 (1976), 23–35.
3. J. Conway and B. Morrel, Operators that are points of spectral continuity, Integral Equations

School of Mathematics, Trinity College, Dublin, Ireland

Current address: Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada