A weakly infinite-dimensional compactum which is not countable-dimensional
HTML articles powered by AMS MathViewer
- by Roman Pol
- Proc. Amer. Math. Soc. 82 (1981), 634-636
- DOI: https://doi.org/10.1090/S0002-9939-1981-0614892-2
- PDF | Request permission
Abstract:
A compact metric space is constructed which is neither a countable union of zero-dimensional sets nor has an essential map onto the Hilbert cube.References
- P. S. Aleksandrov, The present status of the theory of dimension, Uspehi Matem. Nauk (N.S.) 6 (1951), no. 4(45), 43–68 (Russian). MR 0046639
- P. S. Aleksandrov, Some results in the theory of topological spaces obtained within the last twenty-five years, Russian Math. Surveys 15 (1960), no. 2, 23–83. MR 0119181, DOI 10.1070/RM1960v015n02ABEH004216
- P. S. Aleksandrov and B. A. Pasynkov, Vvedenie v teoriyu razmernosti: Vvedenie v teoriyu topologicheskikh prostranstv i obshchuyu teoriyu razmernosti, Izdat. “Nauka”, Moscow, 1973 (Russian). MR 0365524
- N. Bourbaki, Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1045, Hermann, Paris, 1958 (French). Deuxième édition revue et augmentée. MR 0173226
- R. Engelking, Transfinite dimension, Surveys in general topology, Academic Press, New York-London-Toronto, Ont., 1980, pp. 131–161. MR 564101 V. V. Fedorčuk, Infinite-dimensional compact Hausdorff spaces, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978); English transl. in Math. USSR Izv. 13 (1979), 445-460.
- David W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), 167–173. MR 243496, DOI 10.4064/fm-63-2-167-173 W. Hurewicz and H. Wallman, Dimension theory, Van Nostrand, Princeton, N. J., 1948.
- Bronisław Knaster, Sur les coupures biconnexes des espaces euclidiens de dimension $n>1$ arbitraire, Rec. Math. [Mat. Sbornik] N.S. 19(61) (1946), 9–18 (Russian, with French summary). MR 0017520 K. Kuratowski, Sur le prolongement des fonctions continues et les transformations en polytopes, Fund. Math. 24 (1935), 258-268. —, Topology. Vol. II, PWN, Warsaw, 1968.
- A. Lelek, Dimension inequalities for unions and mappings of separable metric spaces, Colloq. Math. 23 (1971), 69–91. MR 322829, DOI 10.4064/cm-23-1-69-91 S. Mazurkiewicz, Sur les problèmes $\kappa$ et $\lambda$ de Urysohn, Fund. Math. 10 (1927), 311-319.
- E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375–376. MR 152985, DOI 10.1090/S0002-9904-1963-10931-3
- Keiô Nagami, Dimension theory, Pure and Applied Mathematics, Vol. 37, Academic Press, New York-London, 1970. With an appendix by Yukihiro Kodama. MR 0271918
- Roman Pol, On classification of weakly infinite-dimensional compacta, Fund. Math. 116 (1983), no. 3, 169–188. MR 716218, DOI 10.4064/fm-116-3-169-188 —, A remark on $A$-weakly infinite-dimensional spaces, General Topology Appl. (to appear).
- Leonard R. Rubin, R. M. Schori, and John J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl. 10 (1979), no. 1, 93–102. MR 519716, DOI 10.1016/0016-660x(79)90031-x
- Yu. Smirnov, On dimensional properties of infinite-dimensional spaces, General Topology and its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961) Academic Press, New York; Publ. House Czech. Acad. Sci., Prague, 1962, pp. 334–336. MR 0150726
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 82 (1981), 634-636
- MSC: Primary 54F45
- DOI: https://doi.org/10.1090/S0002-9939-1981-0614892-2
- MathSciNet review: 614892