THE FRÉCHET SPACE ω
ADmits A STRICTLY STRONGER SEPARABLE
AND QUASICOMPLETE LOCALLY CONVEX TOPOLOGY

SUSANNE DIEROLF

Let \mathcal{L} denote the class of all locally convex Hausdorff spaces (E, \mathcal{X}) with the following property: Every locally convex Hausdorff topology $\mathcal{S} \subseteq \mathcal{X}$ on E has the same subfamily summable sequences as \mathcal{X}. Several articles have been devoted to the investigation of the richness of \mathcal{L}, e.g., Kalton [4], Labuda [6], [7], Graves [3]; see also the references in [3]. For example, \mathcal{L} contains every fully complete locally convex space which does not contain 1^∞ [6, p. 219, (8)], hence every separable Fréchet space. E. Thomas asked in a letter of 1976 whether \mathcal{L} even contains every separable quasicomplete space. This note provides a negative answer to this question.

We will use the following results about separability which we prove for general topological vector spaces.

Lemma. Every finite codimensional linear subspace H in a separable topological vector space E is separable.

Proof. We may at once assume that $H = \ker f$, where f is a discontinuous linear form on E.

E contains a dense linear subspace L of countable dimension. For every $x \in E$ let L_x denote the linear span of $L \cup \{x\}$. We denote the topology of E by \mathcal{X}. The strongest linear topology \mathcal{S} on E such that for every $x \in E$, the relative topologies $\mathcal{S}|L_x$ and $\mathcal{X}|L_x$ coincide, is clearly stronger than \mathcal{X}. Moreover $\mathcal{S}|L = \mathcal{X}|L$ and L is dense in (E, \mathcal{S}), hence $\mathcal{X} = \mathcal{S}$ by [2, p. 349, Lemma 1]. Since f is discontinuous we deduce that for some $z \in E$ the restriction $f|L_z$ is discontinuous, whence $H \cap L_z$ is dense in L_z. Thus $H \cap L_z$ is dense in E and hence dense in H. Since $H \cap L_z$ is of countable dimension, we have proved that H is separable. □

(For a locally convex space E, a somewhat technical proof of the lemma has been given by Valdivia in [8, p. 195, Lemma 2].)

Proposition. Let (E, \mathcal{X}) be a separable topological vector space over $K \in \{\mathbb{R}, \mathbb{C}\}$ and let $(f_n)_{n \in \mathbb{N}}$ be a sequence of linear forms on E. Then the initial topology \mathcal{F} on E with respect to the identity map $\text{id}: E \to (E, \mathcal{X})$ and all the functionals $f_n: E \to K$ ($n \in \mathbb{N}$) is again separable.

Received by the editors September 29, 1980.
1980 Mathematics Subject Classification. Primary 46A35, 46A05.

Key words and phrases. Separable topological vector spaces, subseries convergent series, Orlicz-Pettis property.

© 1981 American Mathematical Society
0002-9939/81/0000-0380/$01.50

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. For every \(n \in \mathbb{N} \), the space \(E \) provided with the initial topology \(\mathcal{T}_n \) with respect to \(\text{id} \colon E \to (E, \mathcal{X}) \) and \(f_i \colon E \to \mathbb{K} \) (\(1 < i < n \)), is the topological direct sum of \((\bigcap_{1 < i < n} \ker f_i, \mathcal{X}) \bigcap_{1 < i < n} \ker f_i \) and a finite dimensional linear subspace, hence separable according to the lemma. Since \(\mathcal{T}_n \subset \mathcal{T}_{n+1} \) (\(n \in \mathbb{N} \)) and \(\mathcal{T} \) equals the supremum \(\bigvee_{n \in \mathbb{N}} \mathcal{T}_n \), we obtain the separability of \((E, \mathcal{T})\). □

The separable Fréchet space \(\omega := \mathbb{K}^\mathbb{N} \) provided with the product topology \(\mathcal{Y} \), clearly carries the initial topology with respect to the sequence of linear forms \(p_n \colon \omega \to \mathbb{K}, (x_m)_{m \in \mathbb{N}} \mapsto x_n \) (\(n \in \mathbb{N} \)). Thus we get the following:

Corollary. For every separable linear topology \(\mathcal{X} \) on \(\omega \) the supremum \(\mathcal{X} \vee \mathcal{Y} \) is again separable.

Remark. We mention that the supremum of two separable linear topologies need not be separable. In fact, let \((E, \mathcal{X})\) be a separable locally convex space containing a nonseparable linear subspace \(L \). Choose a linear subspace \(M \subset E \) such that \(L \cap M = \{0\} \) and \(L + M = E \). Then the initial topology \(\mathcal{S} \) on \(E \) with respect to \(j \colon E \rightarrow (E, \mathcal{X}), j(x + y) := x - y \) (\(x \in L, y \in M \)) is also separable. One verifies without difficulty that \((E, \mathcal{X} \vee \mathcal{S})\) is the topologically direct sum of \((L, \mathcal{X}|L)\) and \((M, \mathcal{X}|M)\), hence not separable.

Example. We consider the noncomplete separable Montel space \(X \) constructed by Amemtia, Kōmura [1] (cf. also Knowles, Cook [5]), whose dimension is not less than the dimension of \(\omega \) and in which every bounded subset has a finite dimensional linear span (see [1], [5]). Consequently there exists an injective linear map \(f \colon \omega \rightarrow X \) with separable range. Let \(\mathcal{L} \) denote the initial topology on \(\omega \) with respect to \(f \colon \omega \rightarrow X \), which is clearly locally convex.

On account of the corollary, \((\omega, \mathcal{X} \vee \mathcal{Y})\) is separable. Moreover, every bounded set in \((\omega, \mathcal{X} \vee \mathcal{Y})\) has finite dimensional linear span, whence in particular, \((\omega, \mathcal{X} \vee \mathcal{Y})\) is quasicomplete.

Finally, the sequence \((e_n)_{n \in \mathbb{N}}\) of unit vectors \(e_n = (\delta_{mn})_{m \in \mathbb{N}} \in \omega \) is subfamily summable in \((\omega, \mathcal{Y})\), but not bounded, hence not summable, in \((\omega, \mathcal{X} \vee \mathcal{Y})\). Thus \((\omega, \mathcal{X} \vee \mathcal{Y}) \notin \mathcal{L}\).

References

Mathematisches Institut der Universität München, D-8000 München 2, West Germany