The Eisenbud-Evans generalized principal ideal theorem and determinantal ideals
HTML articles powered by AMS MathViewer
- by Winfried Bruns
- Proc. Amer. Math. Soc. 83 (1981), 19-24
- DOI: https://doi.org/10.1090/S0002-9939-1981-0619972-3
- PDF | Request permission
Abstract:
In [2] Eisenbud and Evans gave an important generalization of Krull’s Principal Ideal Theorem. However, their proof, using maximal Cohen-Macaulay modules, may have limited the validity of their theorem to a proper subclass of all local rings. (Hochster proved the existence of maximal Cohen-Macaulay modules for local rings which contain a field, cf. [4]). In the first section we present a proof which is simpler and guarantees the Generalized Principal Ideal Theorem for all local rings. The main result of the second section was conjectured in [2]. Under a hypothesis typically being satisfied for the most important fitting invariant of a module, it improves the Eagon-Northcott bound [1] on the height of a determinantai ideal considerably. Finally we will discuss the implications of a recent theorem of Fairings [3] on determinantal ideals.References
- J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188–204. MR 142592, DOI 10.1098/rspa.1962.0170
- David Eisenbud and E. Graham Evans Jr., A generalized principal ideal theorem, Nagoya Math. J. 62 (1976), 41–53. MR 409440
- Gerd Faltings, Ein Kriterium für vollständige Durchschnitte, Invent. Math. 62 (1981), no. 3, 393–401 (German). MR 604835, DOI 10.1007/BF01394251 M. Hochster, Deep local rings, preprint, Aarhus, 1973.
- Melvin Hochster, Principal ideal theorems, Ring theory (Proc. Conf., Univ. Waterloo, Waterloo, 1978) Lecture Notes in Math., vol. 734, Springer, Berlin, 1979, pp. 174–206. MR 548129
- Irving Kaplansky, Commutative rings, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
- Günter Scheja and Uwe Storch, Differentielle Eigenschaften der Lokalisierungen analytischer Algebren, Math. Ann. 197 (1972), 137–170 (German). MR 306172, DOI 10.1007/BF01419591
- Udo Vetter, Zu einem Satz von G. Trautmann über den Rang gewisser kohärenter analytischer Moduln, Arch. Math. (Basel) 24 (1973), 158–161 (German). MR 344518, DOI 10.1007/BF01228192
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 19-24
- MSC: Primary 13C05; Secondary 13C15
- DOI: https://doi.org/10.1090/S0002-9939-1981-0619972-3
- MathSciNet review: 619972