Normal classes of prime rings determined by modules
HTML articles powered by AMS MathViewer
- by W. K. Nicholson and J. F. Watters
- Proc. Amer. Math. Soc. 83 (1981), 27-30
- DOI: https://doi.org/10.1090/S0002-9939-1981-0619974-7
- PDF | Request permission
Abstract:
It is shown that primitive rings with a socle, left weakly primitive rings and prime Johnson rings constitute normal classes of rings. The technique involves characterizing each class as all rings with a faithful module of a certain type.References
- S. A. Amitsur, Rings of quotients and Morita contexts, J. Algebra 17 (1971), 273–298. MR 414604, DOI 10.1016/0021-8693(71)90034-2
- Kwangil Koh and A. C. Mewborn, The weak radical of a ring, Proc. Amer. Math. Soc. 18 (1967), 554–559. MR 213388, DOI 10.1090/S0002-9939-1967-0213388-2
- W. K. Nicholson and J. F. Watters, Normal radicals and normal classes of rings, J. Algebra 59 (1979), no. 1, 5–15. MR 541666, DOI 10.1016/0021-8693(79)90148-0
- Augusto H. Ortiz, On the structure of semiprime rings, Proc. Amer. Math. Soc. 38 (1973), 22–26. MR 313292, DOI 10.1090/S0002-9939-1973-0313292-8
- Louis Rowen, Monomial conditions on prime rings, Israel J. Math. 27 (1977), no. 2, 131–149. MR 472906, DOI 10.1007/BF02761663
- J. Zelmanowitz, Semiprime modules with maximum conditions, J. Algebra 25 (1973), 554–574. MR 320087, DOI 10.1016/0021-8693(73)90101-4
- J. M. Zelmanowitz, Dense rings of linear transformations, Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), Lecture Notes in Pure and Appl. Math., Vol. 26, Dekker, New York, 1977, pp. 281–295. MR 0442013
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 27-30
- MSC: Primary 16A48; Secondary 16A49
- DOI: https://doi.org/10.1090/S0002-9939-1981-0619974-7
- MathSciNet review: 619974