Boundary value problems for second order nonlinear matrix differential equations
HTML articles powered by AMS MathViewer
- by Warren E. Shreve
- Proc. Amer. Math. Soc. 83 (1981), 63-68
- DOI: https://doi.org/10.1090/S0002-9939-1981-0619982-6
- PDF | Request permission
Abstract:
Existence of a solution to $X'' = F(t,X,X’)$, $X(a) = A$, $X(b) = B$, is shown under certain conditions using a degree-theoretic result similar to one of Bebernes where $X,F,A,B$ are $n \times n$ matrices.References
- J. W. Bebernes, A simple alternative problem for finding periodic solutions of second order ordinary differential systems, Proc. Amer. Math. Soc. 42 (1974), 121–127. MR 330597, DOI 10.1090/S0002-9939-1974-0330597-6
- J. W. Bebernes and K. Schmitt, Periodic boundary value problems for systems of second order differential equations, J. Differential Equations 13 (1973), 32–47. MR 340700, DOI 10.1016/0022-0396(73)90030-2
- Richard Bellman, Introduction to matrix analysis, 2nd ed., McGraw-Hill Book Co., New York-Düsseldorf-London, 1970 (Russian). MR 0258847
- Leonard Fountain and Lloyd Jackson, A generalized solution of the boundary value problem for $y^{\prime \prime }=f(x,\,y,\,y^{\prime } )$, Pacific J. Math. 12 (1962), 1251–1272. MR 163002
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Kenneth A. Heimes, Two point boundary problems in Banach space, J. Differential Equations 5 (1969), 215–225. MR 240430, DOI 10.1016/0022-0396(69)90040-0
- K. A. Heimes, Green’s functions for linear second order systems, SIAM J. Math. Anal. 9 (1978), no. 1, 207–214. MR 463602, DOI 10.1137/0509016
- Lloyd K. Jackson, Subfunctions and second-order ordinary differential inequalities, Advances in Math. 2 (1968), 307–363. MR 229896, DOI 10.1016/0001-8708(68)90022-4
- Klaus Schmitt, Periodic solutions of systems of second-order differential equations, J. Differential Equations 11 (1972), 180–192. MR 294790, DOI 10.1016/0022-0396(72)90088-5 J. Schwartz, Nonlinear functional analysis, McGraw-Hill, New York, 1970.
- E. C. Tomastik, Oscillation of nonlinear matrix differential equations of second order, Proc. Amer. Math. Soc. 19 (1968), 1427–1431. MR 232046, DOI 10.1090/S0002-9939-1968-0232046-2
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 63-68
- MSC: Primary 34B15
- DOI: https://doi.org/10.1090/S0002-9939-1981-0619982-6
- MathSciNet review: 619982