$k$-discrete differentials of certain operators on Banach spaces
HTML articles powered by AMS MathViewer
- by S. Dayal
- Proc. Amer. Math. Soc. 83 (1981), 77-82
- DOI: https://doi.org/10.1090/S0002-9939-1981-0619986-3
- PDF | Request permission
Abstract:
By observing a convex property of discrete differences, one-sided $k$-discrete, $k$-discrete Gâteaux and $k$-discrete Fréchet differentials are introduced. It is proved that a locally bounded $n$-convex function has $k$-discrete Fréchet differentials for $1 \leqslant k \leqslant n - 2$ and one-sided $(n - 1)$-discrete differentials at every point of its domain. Various properties of discrete differentials of an $n$-convex function are studied. As an application of these results the author proves that an $n$-convex function has a strong $(n - 2)$-Taylor series expansion and an $(n - 1)$th Fréchet differential provided it has a strong $n$-Taylor series expansion about the point.References
- J. Marshall Ash, A characterization of the Peano derivative, Trans. Amer. Math. Soc. 149 (1970), 489–501. MR 259041, DOI 10.1090/S0002-9947-1970-0259041-5
- P. L. Butzer and W. Kozakiewicz, On the Riemann derivatives for integrable functions, Canad. J. Math. 6 (1954), 572–581. MR 64131, DOI 10.4153/cjm-1954-062-5
- Z. Ciesielski, Some properties of convex functions of higher orders, Ann. Polon. Math. 7 (1959), 1–7. MR 109202, DOI 10.4064/ap-7-1-1-7 S. Dayal, On local representations of functions on normed linear spaces, Ph.D. thesis, Case Western Reserve University, Cleveland, Ohio, 1972.
- S. Dayal, A converse of Taylor’s theorem for functions on Banach spaces, Proc. Amer. Math. Soc. 65 (1977), no. 2, 265–273. MR 448394, DOI 10.1090/S0002-9939-1977-0448394-2 A. Denjoy, Sur l’intégration des coefficients différentiels d’ordre supérieur, Fund. Math. 25 (1935), 273-362.
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319 N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958.
- Roman Ger, Convex functions of higher orders in Euclidean spaces, Ann. Polon. Math. 25 (1971/72), 293–302. MR 304580, DOI 10.4064/ap-25-3-293-302
- Roman Ger, $n$-convex functions in linear spaces, Aequationes Math. 11 (1974), 172–176. MR 358119, DOI 10.1007/BF01832854
- M. Z. Nashed, On the representation and differentiability of operators, Proceedings of the Conference on the Constructive Theory of Functions (Approximation Theory) (Budapest, 1969) Akadémiai Kiadó, Budapest, 1972, pp. 325–330. MR 0390766 —, Differentiability and relative properties of nonlinear operators: Some aspects of the role of differentials in nonlinear analysis, Nonlinear Functional Anal. and Appl. (Proc. Advanced Sem., Math. Res. Center, Univ. of Wisconsin, Madison, 1970), Academic Press, New York, 1971, pp. 103-309.
- Clifford E. Weil, On approximate and Peano derivatives, Proc. Amer. Math. Soc. 20 (1969), 487–490. MR 233944, DOI 10.1090/S0002-9939-1969-0233944-7
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 77-82
- MSC: Primary 58C20; Secondary 26E99, 41A65, 49A51
- DOI: https://doi.org/10.1090/S0002-9939-1981-0619986-3
- MathSciNet review: 619986