Derivatives of polynomials with positive coefficients
HTML articles powered by AMS MathViewer
- by A. K. Varma
- Proc. Amer. Math. Soc. 83 (1981), 107-112
- DOI: https://doi.org/10.1090/S0002-9939-1981-0619993-0
- PDF | Request permission
Abstract:
Let ${P_n}(x)$ be an algebraic polynomial of degree $n$ with positive coefficients. We set \[ {I_n} = \frac {{||P’_n(x)\omega (x)|{|_{{L_2}[0,\infty )}}}}{{||{P_n}(x)\omega (x)|{|_{{L_2}[0,\infty )}}}}.\] In this work upper bounds of $I_{n}$ are investigated. We restrict ourselves here with the case $\omega (x) = {x^{\alpha /2}}{e^{ - x/2}}$. Reslts are shown to be best possible.References
- P. Erdös, On extremal properties of the derivatives of polynomials, Ann. of Math. (2) 41 (1940), 310–313. MR 1945, DOI 10.2307/1969005
- Einar Hille, G. Szegö, and J. D. Tamarkin, On some generalizations of a theorem of A. Markoff, Duke Math. J. 3 (1937), no. 4, 729–739. MR 1546027, DOI 10.1215/S0012-7094-37-00361-2
- G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239–251. MR 155135, DOI 10.1007/BF01398235
- G. G. Lorentz, Derivatives of polynomials with positive coefficients, J. Approximation Theory 1 (1968), 1–4. MR 231957, DOI 10.1016/0021-9045(68)90052-x A. A. Markov, On a problem of D. I. Mendeleev, Izv. Akad. Nauk 62 (1889), 1-24.
- John T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approximation Theory 6 (1972), 354–358. MR 342909, DOI 10.1016/0021-9045(72)90041-x
- Gábor Szegö, On some problems of approximations, Magyar Tud. Akad. Mat. Kutató Int. Közl. 9 (1964), 3–9 (English, with Russian summary). MR 173895
- P. Turán, Remark on a theorem of Erhard Schmidt, Mathematica (Cluj) 2(25) (1960), 373–378. MR 132963
- A. K. Varma, Some inequalities of algebraic polynomials having real zeros, Proc. Amer. Math. Soc. 75 (1979), no. 2, 243–250. MR 532144, DOI 10.1090/S0002-9939-1979-0532144-7 A. Zygmund, A remark on the conjugate series, Proc. London Math. Soc. 36 (1932), 392-400.
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 107-112
- MSC: Primary 26C05; Secondary 26D05, 41A17
- DOI: https://doi.org/10.1090/S0002-9939-1981-0619993-0
- MathSciNet review: 619993