The spectrum of vector bundle flows with invariant subbundles
HTML articles powered by AMS MathViewer
- by R. C. Swanson
- Proc. Amer. Math. Soc. 83 (1981), 141-145
- DOI: https://doi.org/10.1090/S0002-9939-1981-0620000-4
- PDF | Request permission
Abstract:
A vector bundle flow $({\Phi ^t},{\phi ^t})$ on the vector bundle $E$ over a compact metric space $M$ induces a one-parameter group $\{ \Phi _t^\# \}$ of bounded operators acting on the continuous sections of $E$, with infinitesimal generator $L$. An example is given by the tangent flow $(T{\phi ^t},{\phi ^t})$, if ${\phi ^t}$ is a flow on a smooth manifold. In this article, the spectrum of the generator $L$ is used to study the exponential growth rates of bundle trajectories in the neighborhood of a fixed invariant subbundle, e.g. the tangent bundle of a submanifold of $M$. Auxiliary normal and tangential spectra are introduced, and their relationship and fine structure are explored.References
- Carmen Chicone and R. C. Swanson, The spectrum of the adjoint representation and the hyperbolicity of dynamical systems, J. Differential Equations 36 (1980), no. 1, 28–39. MR 571125, DOI 10.1016/0022-0396(80)90073-X
- Carmen Chicone and R. C. Swanson, Spectral theory for linearizations of dynamical systems, J. Differential Equations 40 (1981), no. 2, 155–167. MR 619131, DOI 10.1016/0022-0396(81)90015-2
- H. R. Dowson, Spectral theory of linear operators, London Mathematical Society Monographs, vol. 12, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 511427 E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc, Providence, R. I., 1957; reprint 1974.
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173
- Ricardo Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc. 229 (1977), 351–370. MR 482849, DOI 10.1090/S0002-9947-1977-0482849-4
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Robert J. Sacker and George R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), no. 3, 320–358. MR 501182, DOI 10.1016/0022-0396(78)90057-8
- Robert J. Sacker and George R. Sell, The spectrum of an invariant submanifold, J. Differential Equations 38 (1980), no. 2, 135–160. MR 597797, DOI 10.1016/0022-0396(80)90001-7
- Robert J. Sacker and George R. Sell, A note on Anosov diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 278–280. MR 331432, DOI 10.1090/S0002-9904-1974-13460-9
- James F. Selgrade, Isolated invariant sets for flows on vector bundles, Trans. Amer. Math. Soc. 203 (1975), 359–390. MR 368080, DOI 10.1090/S0002-9947-1975-0368080-X
- Richard G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277. MR 143225, DOI 10.1090/S0002-9947-1962-0143225-6
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 141-145
- MSC: Primary 58F25; Secondary 58F19
- DOI: https://doi.org/10.1090/S0002-9939-1981-0620000-4
- MathSciNet review: 620000