Flat bundles with solvable holonomy. II. Obstruction theory
HTML articles powered by AMS MathViewer
- by William M. Goldman
- Proc. Amer. Math. Soc. 83 (1981), 175-178
- DOI: https://doi.org/10.1090/S0002-9939-1981-0620007-7
- PDF | Request permission
Abstract:
Necessary and sufficient conditions for a connected solvable Lie group $G$ are given so that every flat principal $G$-bundle over a ${\text {CW}}$-complex is trivial after passing to a finite covering space.References
- W. Goldman, Discontinuous groups and the Euler class, Doctoral dissertation, University of California, Berkeley, 1980.
- William M. Goldman and Morris W. Hirsch, Flat bundles with solvable holonomy, Proc. Amer. Math. Soc. 82 (1981), no. 3, 491–494. MR 612747, DOI 10.1090/S0002-9939-1981-0612747-0
- Michael Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5–99 (1983). MR 686042
- Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257–309 (German). MR 6510, DOI 10.1007/BF02565622
- John Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215–223. MR 95518, DOI 10.1007/BF02564579
- Dennis Sullivan, A generalization of Milnor’s inequality concerning affine foliations and affine manifolds, Comment. Math. Helv. 51 (1976), no. 2, 183–189. MR 418119, DOI 10.1007/BF02568150
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- Friedrich Hirzebruch, Topological methods in algebraic geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Translated from the German and Appendix One by R. L. E. Schwarzenberger; With a preface to the third English edition by the author and Schwarzenberger; Appendix Two by A. Borel; Reprint of the 1978 edition. MR 1335917
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 175-178
- MSC: Primary 55R10; Secondary 53C10
- DOI: https://doi.org/10.1090/S0002-9939-1981-0620007-7
- MathSciNet review: 620007