PEDERSEN IDEAL AND GROUP ALGEBRAS

KLAUS HARTMANN

Abstract. For a locally compact T_2 group G which has an open subgroup of polynomial growth (e.g., G a group that has a compact neighbourhood invariant under inner automorphisms or G a compact extension of a locally compact nilpotent group) the intersection of the Pedersen ideal of the group C^*-algebra with $L^1(G)$ is dense in $L^1(G)$ (Theorem 1). For groups with small invariant neighbourhoods this intersection is the smallest dense ideal of $L^1(G)$, and it consists exactly of those $f \in L^1(G)$ whose "Fourier transform" vanishes outside some (closed) quasicompact subset of G (Theorem 3); the Pedersen ideal of $C^*(G)$ is described as the set of all $a \in C^*(G)$ for which $\{ \pi \in \hat{G} : \pi(a) \neq 0 \}$ is contained in some (closed) quasicompact subset of \hat{G} (Theorem 2).

1. Introduction. In [11] G. K. Pedersen proved that every C^*-algebra A has a smallest dense order-related ideal K_A, and in 1975 K. B. Laursen and A. M. Sinclair showed that K_A (the so-called Pedersen ideal of A) is the smallest ideal among all dense ideals of A [5]. In [12] Pedersen asked whether $K_G \cap L^1(G)$ is dense in $L^1(G)$ where G is a locally compact T_2 group, $L^1(G)$ its group algebra and K_G the Pedersen ideal of the group C^*-algebra $C^*(G)$. The answer is affirmative in the case where G is abelian or compact (well known) or a connected real nilpotent Lie group [13].

In this note we shall show that the answer is affirmative even in the case where G has at least one compact neighbourhood U of the group identity such that $\lambda(U^k) = O(k^n)$ for some fixed $n \in \mathbb{N}$ (λ left Haar-measure). Examples of such groups are, e.g., groups that contain an open subgroup which is a compact extension of a (locally compact) nilpotent group, and IN-groups ($G \in [\text{IN}] \leftrightarrow G$ has a compact invariant neighbourhood); the latter because the open subgroup G_F consisting of all elements with relatively compact conjugacy classes has polynomial growth [10].

In the special case of a SIN-group G ($G \in [\text{SIN}] \leftrightarrow G$ has a fundamental system of compact invariant (under inner automorphisms) neighbourhoods of the identity of G) we show that K_G consists exactly of those $a \in C^*(G)$ for which $\{ \pi \in \hat{G} : \pi(a) \neq 0 \}$ is contained in a quasicompact subset of \hat{G}, and that $L^1(G) \cap K_G$ is the smallest dense ideal of $L^1(G)$.

The question whether there is a locally compact group G at all for which $L^1(G) \cap K_G$ is not dense in $L^1(G)$ or even $L^1(G) \cap K_G = \{0\}$ still seems to be open.

Received by the editors March 14, 1980 and, in revised form, December 5, 1980.

1980 Mathematics Subject Classification. Primary 22D15; Secondary 22D25, 43A20.

Key words and phrases. Group algebra, group C^*-algebra, Pedersen ideal, polynomial growth, functional calculus, SIN-group.

© 1981 American Mathematical Society

0002-9939/81/0000-0441/$02.50

183

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
REMARK. The existence of a smallest dense ideal in $L^1(G)$, $G \in [\text{SIN}]$, has also been shown in [4].

2. Pedersen ideal and groups of polynomial growth. Let A be a C^*-algebra. The Pedersen ideal K_A can be obtained in the following way (see [12]): K_A is the complex linear span of the invariant face generated by the set

$$K_A^+ := \{ x \in A^+: \exists y \in A^+ \text{ with } x = xy\}.$$

(A face F is a convex cone in A^+ such that: $x \in F$, $z \in A^+$, $z < x \Rightarrow z \in F$; F is called invariant if $a^*Fa \subseteq F \forall a \in A \Leftrightarrow u^*Fu = F \forall u \in A$, u unitary, A the C^*-algebra obtained by adjunction of a unit (if A does not have a unit)).

For group algebras of groups with polynomial growth, J. Dixmier has found in [1] a functional calculus which turns out to be a very useful tool in harmonic analysis (see e.g. [7] and [8]).

Let C_n ($n \in \mathbb{N}$) denote the set of all functions $\varphi: \mathbb{R} \rightarrow \mathbb{C}$, $\varphi(0) = 0$ which have continuous and integrable derivatives of order $\leq n + 3$. Let V be a compact neighbourhood of the identity of a locally compact group G such that $\lambda(V^k) = O(k^n)$, $f = f^* \in L^1(G) \cap L^2(G)$ such that $f = 0$ outside V. Then for every $\varphi \in C_n$ the integral

$$\varphi(f) := \frac{1}{2\pi} \int_{\mathbb{R}} \exp(\lambda f) \hat{\varphi}(\lambda) \, d\lambda$$

converges in $L^1(G)$ ($\hat{\varphi}$ is the Fourier transform of φ; “exp” is with respect to convolution) and for every *-representation π of $L^1(G)$ on a Hilbert space

$$\pi(\varphi(f)) = \varphi(\pi(f))$$

where the right side is defined by the usual operational calculus on the hermitian operator $\pi(f)$.

THEOREM 1. Let G be a locally compact T_2 group with a compact neighbourhood V of the identity e of G such that $\lambda(V^k) = O(k^n)$ for some $n \in \mathbb{N}$ (equivalently: G contains an open subgroup of polynomial growth). Then $L^1(G) \cap K_G$ is a dense ideal in $L^1(G)$ (where K_G denotes the Pedersen ideal of $C^*(G)$).

PROOF. Take a compact neighbourhood $U = U^{-1}$ of e such that $U^{2(n+4)} \subseteq V$, $(g_i)_{i \in I}$ a bounded approximate unit for $L^1(G)$, $g_i: G \rightarrow \mathbb{R}$ continuous, $g_i(x) > 0$ $\forall x \in G$, supp$(g_i) \subseteq U$, $\|g_i\|_1 = 1$, and define $f_i := g_i^* \cdot g_i$. Take $\varphi \in C_n$ such that

$$\varphi(t) = t^{n+4}$$

for all t with $|t| < 1 = \|f_i\|_1$, $\varphi(t) > 0 \ \forall t > 0$.

Now fix i, choose $\varepsilon > 0$. There is a real valued $\psi_{i,\varepsilon} \in C_n$ with

$$\psi_{i,\varepsilon}(t) = \varphi(t) \ \forall t \in \mathbb{R} \setminus [-1, +1],$$

$$|\psi_{i,\varepsilon}^{(\alpha)}(t) - \varphi^{(\alpha)}(t)| < \varepsilon/A_i \ \forall t \in [-1, +1], \alpha = 0, 1, \ldots, n + 3,$$

and

$$\psi_{i,\varepsilon}(t) = 0 \ \forall |t| < \delta_{i,\varepsilon} \text{ for some } \delta_{i,\varepsilon} \in (0, 1).$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
[1, Lemme 8] where A_i is the constant A (independent of e) in the proof of [1, Théorème 1.b]. Without loss of generality $\psi_{t, \varepsilon}(t) > 0 \, \forall t > 0$.

Now we have $\varphi(f_t) = f_t^{*+\delta}$ (exponent with respect to convolution) and

$$\|\psi_{t, \varepsilon}(f_t) - f_t^{*+\delta}\|_1 < \varepsilon$$

[1, Théorème 1.b], hence $\{\psi_{t, \varepsilon}(f_t) : i \in I, 0 < \varepsilon < 1\}$ is a bounded approximating set for $L^1(G)$. If we can show all $\psi_{t, \varepsilon}(f_t)$ to be in K_G the proof is finished, since $\{f \ast \psi_{t, \varepsilon}(f_t) : f \in L^1(G), i \in I, 0 < \varepsilon < 1\}$ is dense in $L^1(G)$.

By construction $f_t \in C^*(G)^+$, and its spectrum $\sigma_{C^*(G)}(f_t)$ is contained in $[0, 1]$. Since $\psi_{t, \varepsilon}(f_t) = \psi_{t, \varepsilon}(f_t)$ (take for π the universal representation in (\ast); $\psi_{t, \varepsilon}(f_t)$ means the usual functional calculus for C^*-algebras) and $\psi_{t, \varepsilon}(t) > 0 \, \forall t > 0$, we have $\psi_{t, \varepsilon}(f_t) \in C^*(G)^+$. Choose a function $\rho_{t, \varepsilon} : \mathbb{R} \to [0, \infty)$, $\rho_{t, \varepsilon} \in C_n$ such that

$$\rho_{t, \varepsilon}(t) = 1 \quad \forall t \in [\delta_{t, \varepsilon}, 1]$$

and

$$\rho_{t, \varepsilon}(t) = 0 \quad \forall t \in \mathbb{R} \setminus [1/2 \cdot \delta_{t, \varepsilon}, 2].$$

Now $\rho_{t, \varepsilon}(f_t) \in L^1(G)$, $\rho_{t, \varepsilon}(f_t) = \rho_{t, \varepsilon}(f_t) \in C^*(G)^+$ and $\psi_{t, \varepsilon}(f_t) \rho_{t, \varepsilon}(f_t) = \psi_{t, \varepsilon}(f_t)$, hence $\psi_{t, \varepsilon}(f_t) \in K^{-\infty} \subseteq K_G$.

Remark 1. The properties of the bounded approximating set in the proof of Theorem 1 show at once that $I \cap K_G$ is dense in I for every left (or right) ideal in $L^1(G)$ (I not necessarily closed).

Remark 2. The construction of the Pedersen ideal K_A of a C^*-algebra A shows at once that for all elements $x \in K_A$ the set $\{\pi \in \hat{A} : \pi(x) \neq 0\}$ is contained in a quasicompact subset of \hat{A} since $ab = b \, (a, b \in A^+)$ implies $\{\pi \in \hat{A} : \pi(b) \neq 0\} \subseteq \{\pi \in \hat{A} : \|\pi(a)\| > 1\}$. Hence we have the following

Corollary. G as in Theorem 1. The set of all $f \in L^1(G)$ for which the “Fourier transform” $\hat{f}, \hat{f}(\pi) : = \pi(f), \pi \in \hat{G}$, vanishes outside a quasicompact set of \hat{G} is dense in $L^1(G)$.

3. **Pedersen ideal and SIN-groups.** For SIN-groups we get more detailed information than in the corollary above:

Theorem 2. Let $G \in [SIN], K_G$ the Pedersen ideal of $C^*(G)$, $J_G := \{a \in C^*(G); \hat{a}$ vanishes outside a quasicompact subset of $\hat{G}\}$ (where $\hat{a}(\pi) := \pi(a) \, \forall \pi \in \hat{G}$). Then $J_G = K_G$.

Proof. We only have to show $J_G \subseteq K_G$. Consider the following mappings t and p:

$$t : \hat{G} \to \text{Prim} C^*(G), \quad \pi \mapsto \ker \pi,$$

$$p : \text{Prim} C^*(G) \to \text{G-Max} C^*(G_F) \cong E(G_F, G), \quad P \mapsto P \cap C^*(G_F),$$

where $\text{G-Max} C^*(G_F)$ denotes the ideals of $C^*(G_F)$ which are maximal among the G-invariant modular ideals; $\text{G-Max} C^*(G_F)$ with hull-kernel topology is homeomorphic to $E(G_F, G)$ (the extreme points of the set of all G-invariant continuous positive definite functions γ on G_F with $\gamma(e) = 1$) with the topology of compact
convergence; the homeomorphism
\[E(G_F, G) 	o G\text{-Max } C^*(G_F) \]
is given by
\[\gamma \mapsto \{ a \in C^*(G_F) : \langle a^*a, \gamma \rangle = 0 \} \quad [9, (4)]. \]

For each \(P \in \text{Prim } C^*(G) \) there is a continuous positive definite indecomposable function \(\varphi, \varphi(e) = 1 \) with \(P = \ker \pi_\varphi \), and \(P \cap C^*(G_F) \) corresponds to \((\varphi|G_F)^G \in E(G_F, G) \), which is defined by
\[(\varphi|G_F)^G(n) := \int_{\overline{I(G_F,G)}} \varphi(\beta^{-1}(n)) \, d\beta \]
where \(\overline{I(G_F,G)} \) is a compact group: the closure of the restrictions to \(G_F \) of the inner automorphisms of \(G \). The mapping \(\pi : \ker \pi_\varphi \mapsto (\varphi|G_F)^G \) is well-defined from \(\text{Prim } C^*(G) \) onto \(E(G_F, G) \) (even continuous and proper). See [2].

Now take an arbitrary \(a \in J_G \), choose \(L \subseteq \text{Prim } C^*(G) \) quasicompact with \(t^{-1}(L) \supseteq \{ \pi \in \hat{G} : \pi(a) \neq 0 \} \). Since the “Fourier transform” of the hermitian and positive parts of \(a \) vanish outside \(t^{-1}(L) \) too, \(a > 0 \) without loss of generality. Since the algebra of functions in \(L^1(G_F) \) that are central in \(L^1(G) \) is a completely regular Banach algebra with maximal ideal space \(E(G_F, G) \) (see [3, (4)] or [6, (2.4)]) we can get \(f \in L^1(G_F) \), central in \(L^1(G) \), with
\[\hat{f}(\alpha) := \int_{G_F} f(x)\alpha(x) \, dx > 0 \quad \forall \alpha \in E(G_F, G), \]
\[\hat{f}(\alpha) = 1 \quad \forall \alpha \in p(L) \subseteq E(G_F, G). \]
Then \(f \in C^*(G_F)^+ \subseteq C^*(G)^+ \) and \(\pi(f) = \text{id}_{H_\varphi} \forall \pi \in t^{-1}(L) \subseteq \hat{G} \), hence \(fa = a \), hence \(a \in K^\infty_G \subseteq K_G \).

Let us check \(\pi(f) = \text{id}_{H_\varphi} \forall \pi \in t^{-1}(L) \). Let \(\pi \in \hat{G}, \varphi \) with \(\pi_\varphi = \pi \):
\[\hat{f}((\varphi|G_F)^G) = \int_{G_F} f(x)(\varphi|G_F)^G(x) \, dx = \int_{G_F} f^G(x)\varphi(x) \, dx \]
\[= \int_{G} f(x)\varphi(x) \, dx = \int_{G} f(x)(\pi(x)\xi_\varphi, \xi_\varphi) \, dx \]
\[= (\pi(f)\xi_\varphi, \xi_\varphi). \]
Since \(f \) is central and \(\pi \) irreducible, \(\pi(f) \) is a multiple of \(\text{id}_{H_\varphi} \), so we have
\[\pi(f) = \hat{f}((\varphi|G_F)^G) \cdot \text{id}_{H_\varphi} \forall \pi \in \hat{G}, \varphi \text{ with } \pi_\varphi = \pi; \]
hence the assertion.

Remark. In a SIN-group \(G \) each quasicompact subset of \(\hat{G} \) is contained in a closed quasicompact subset of \(\hat{G} \) (because the mapping \(p \) in the proof of Theorem 2 is continuous and proper).

Lemma. \(G \in \text{[SIN]}, I \) a dense ideal in \(L^1(G) \). Then for every quasicompact set \(L \subseteq \text{Prim } C^*(G) \) there is a \(u \in I \) such that \(u \) is a unit for \(L^1(G) \) modulo \(k(L) \cap L^1(G) \). \[k(L) := \cap \{ P \in \text{Prim } C^*(G) : P \in L \} \].
Proof. For L quasicompact take f as in the proof of Theorem 2; then f is a unit for $L_1(G)/(k(L) \cap L_1(G))$. Since $k(L) \cap L_1(G)$ is a modular ideal in $L_1(G)$, $I + (k(L) \cap L_1(G)) = L_1(G)$ [14, 2.6.8] and thus there is a $d \in k(L) \cap L_1(G)$ and $u \in I$ with $d + u = f$, hence $u - f \in k(L) \cap L_1(G)$ and thus u is a unit for $L_1(G)$ modulo $(k(L) \cap L_1(G))$.

Theorem 3. Let $G \in [SIN]$. Then there is a smallest dense ideal I in $L_1(G)$. I coincides with the intersection of $L_1(G)$ and the Pedersen ideal K_G of $C^*(G)$ and also with the set of all $h \in L_1(G)$ for which the “Fourier transform” \hat{h} vanishes outside a quasicompact subset of \hat{G}.

Proof. $I := L_1(G) \cap K_G$ is dense in $L_1(G)$. Now let I be an arbitrary dense ideal in $L_1(G)$. For every $a \in I$ there exists a quasicompact set $L \subseteq \text{Prim } C^*(G)$ with $L \supseteq \{ P \in \text{Prim } C^*(G); a \not\in P \}$, hence by the lemma above there is a $u \in I$ with $ua + P = a + P \forall P \in L$, and for all $P \in \text{Prim } C^*(G) \setminus L$ too (since then $a \in P$). Thus we have $ua = a$, hence $a \in I$.

The last assertion follows from Theorem 2.

4. Added in proof. 1. Let $G = G_{a,b}(0)$ be the group of all 3×3 matrices of the form

$$\begin{bmatrix}
1 & x & z \\
0 & e^r & y \\
0 & 0 & 1
\end{bmatrix}, \quad r, x, y, z \in \mathbb{R}.$$

Then the intersection of all dense two-sided ideal in $L_1(G)$ is trivial. The intersection of the Pedersen ideal of $C^*(G)$ with $L_1(G)$ is trivial, too. (Communicated by Viktor Losert.)

2. Let G be a locally compact T_2 group. If $G_0 \in [IN]$ (G_0 the identity component) or if G is a group of polynomial growth with symmetric group algebra $L_1(G)$, then there does exist a smallest dense two-sided ideal of $L_1(G)$ (V. Losert, resp., J. Ludwig).

References

FACHBEREICH 17 (MATHEMATIK/INFORMATIK), UNIVERSITÄT-GESAMTHOCHSCHULE PADERBORN, WARBURGER STRASSE 100, D-4790 PADERBORN, FEDERAL REPUBLIC OF GERMANY