ON THE EQUIVARIANT HOMOTOPY TYPE OF G-ANR'S

SEWONIR KWSIK

ABSTRACT. I show that every metric G-ANR has the G-homotopy type of a G-CW complex. Therefore I. James and G. Segal's results concerning equivariant homotopy type are special cases of the Whitehead theorem for G-CW complexes.

In this note G is assumed to be a compact Lie group. A metric G-space X is said to be a G-ANR if for any G-embedding i: X → Y in a metric G-space Y such that iX is closed in Y, the image iX is a G-retract of some open invariant neighborhood of Y.

THEOREM. Every metric G-ANR has the G-homotopy type of a G-CW complex.

As a consequence of this theorem and Theorem 5.3 in [3] we obtain the following.

COROLLARY (JAMES, SEGAL [1]). Let f: X → Y be a G map between G-ANR's. Then f is a G-homotopy equivalence iff f^H: X^H → Y^H is an ordinary homotopy equivalence for every closed subgroup H ⊆ G.

PROOF OF THEOREM. Let X be a metric G-ANR. By the equivariant version of a standard argument (Lemma 4.7 of [4]), it suffices to prove that X is G-dominated by a G-CW complex. Observe that every metric G-space X may be G-embedded as a closed G-subset of a convex G-set in a Banach space of bounded real-valued functions on X with G-action given by g(h)(x) = h(g^{-1}(x)) for g ∈ G, h: X → R, and x ∈ X.

Therefore we may assume that X is a closed G-subset of a convex G-set C in a Banach G-space.

Being a G-ANR, X is a G-retract of some open neighborhood U of X in C; in particular it is G-dominated by some G-CW complex. This is seen by an easy modification of the proof of Theorem 3.B in [2]. We obtain that U is G-dominated by a G-nerve induced by a locally finite refined slice covering and this G-nerve has the G-homotopy type of a G-CW complex (which is a direct limit of barycentric manifolds in the notation of [2]).

REMARK. Matumoto's proof that a barycentric manifold is a G-CW complex is incorrect because it relies on a result of Yang which relies on an incorrect result of Cairns. A correct proof that smooth manifolds are G-CW complexes is in a preprint Triangulation of stratified fibre bundles by Andrei Verona. The weaker
assertion that smooth G-manifolds have the G-homotopy type of G-CW complexes (which is all that might be needed for this paper is immediate from [4]).

I wish to thank the referee for his helpful suggestions.

REFERENCES

Instytut Matematyki, Uniwersytet Gdański, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland