ON ATRIODIC TREE-LIKE CONTINUA

LEX G. OVERSTEEGEN AND E. D. TYMCHATYN

Abstract. D. P. Bellamy has recently shown that atriodic tree-like continua do not have the fixed point property for homeomorphisms. J. B. Fugate and T. B. McLean showed that hereditarily indecomposable tree-like continua have the fixed point property for pointwise periodic homeomorphisms. In this paper the latter result is extended to the case of atriodic tree-like continua. In the course of the proof it is shown that the property of being an atriodic tree-like continuum is a Whitney property. In particular, it is shown that the hyperspace of an atriodic tree-like continuum is at most 2-dimensional.

1. Introduction. A continuum is a compact, connected, metric space. A tree is a finite, connected, simply connected, one-dimensional polyhedron. A continuum is tree-like if it admits finite open covers of arbitrarily small mesh whose nerves are trees. A continuum X is said to be a triod (resp. n-od) if there exists a subcontinuum M of X such that $X \setminus M$ has at least three (resp. at least n) components. We say X is atriodic if X contains no triod. A continuum is hereditarily indecomposable if and only if it contains no 2-od.

If X is a continuum we let $C(X)$ denote the hyperspace of subcontinua of X with the Hausdorff metric. A Whitney map for X is a mapping $\mu : C(X) \to [0, \infty)$ such that $\mu(\{x\}) = 0$ for each $x \in X$ and $\mu(A) < \mu(B)$ for each $A, B \in C(X)$ with $A \subsetneq B$. A Whitney level for X is a set $\mu^{-1}(t)$ where $0 < t < \mu(X)$. Whitney levels are continua in $C(X)$ (see [9, p. 400]). The existence of Whitney maps for X is well known (see [9]).

2. Whitney property. A property P of continua is said to be a Whitney property if whenever A is a continuum with property P then every Whitney level of A also has property P. Krasinkiewicz in [6] and [7] proved that being an arc-like continuum, being a proper circle-like continuum or being an hereditarily indecomposable tree-like continuum is a Whitney property. The main purpose of this section is to show that being an atriodic tree-like continuum is also a Whitney property. This provides a converse to a result of Nadler [8, 3.5] who has shown that if X is a continuum whose Whitney levels are tree-like then X is atriodic and tree-like.

A continuum X is said to have the covering property (see [9]) if for each Whitney level $\mu^{-1}(t)$ of X and each subcontinuum Λ of $\mu^{-1}(t)$, $\bigcup \Lambda = X$ implies $\Lambda = \mu^{-1}(t)$.

Received by the editors May 27, 1980 and, in revised form, October 31, 1980; presented to the Fourteenth Spring Topology Conference at Birmingham, Alabama, March 1980.

Key words and phrases. Atriodic tree-like continua, pointwise periodic homeomorphism, fixed points, Whitney property.

This research was supported in part by NSERC grant number A5616 and a research grant from the University of Saskatchewan.

© 1981 American Mathematical Society

0002-9939/81/0000-0445/$02.00

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 2.1 (See [9, p. 485]). A continuum X has the covering property if and only if each Whitney level of X is irreducible.

Theorem 2.2 [4, 5.6]. Atriodic tree-like continua have the covering property.

Lemma 2.3. Let X be an atriodic tree-like continuum. Let $p \in X$ and let μ be a Whitney map for X. If Λ is a subcontinuum of $\mu^{-1}(t)$ for some Whitney level then $K = \Lambda \cap \{A \in \mu^{-1}(t) \mid p \in A\}$ is an arc or a point or K is empty.

Proof. We suppose $p \in \bigcup \Lambda$. Since $\bigcup \Lambda$ is a continuum, it has the covering property by Theorem 2.2. Now $\mu|_{\bigcup \Lambda}$ is a Whitney map for $\bigcup \Lambda$ and hence Λ is a Whitney level of $\bigcup \Lambda$. By [9, p. 405] $\{A \in \Lambda \mid p \in A\} = K$ is an arcwise connected continuum.

Now $\bigcup K$ is an atriodic tree-like continuum. By Theorem 2.2 $\bigcup K$ has the covering property. Hence, K is a Whitney level of $\bigcup K$. By Theorem 2.1 K is irreducible.

Sorgenfrey proved in [13, Theorem 1.8] that if T is the union of three continua which have a point in common and such that no one of them is a subset of the union of the other two then T contains a triod.

Theorem 2.4. The property of being an atriodic tree-like continuum is a Whitney property.

Proof. Let X be an atriodic tree-like continuum and let $\mu^{-1}(t)$ be a Whitney level of X. If Λ is a subcontinuum of $\mu^{-1}(t)$ then as in the proof of Lemma 2.3 A is a Whitney level of the tree-like continuum $\bigcup \Lambda$. By [11, Theorem 5] the first Čech cohomology group of Λ is trivial.

It follows that $\dim \mu^{-1}(t) = 1$. For if Y is a continuum with $\dim Y > 2$ then there exists an essential map f of Y onto B, the closed unit disk in the plane [10, p. 127]. Then $f|_{f^{-1}(S^1)}$ is essential where S^1 is the boundary of B and, hence, f is essential on some subcontinuum Z of $f^{-1}(S^1)$, i.e. $H^1(Z) \neq 0$.

Let $K = \{(A, x) \mid x \in A \in \mu^{-1}(t)\} \subset \mu^{-1}(t) \times X$. Then K is a continuum and $\dim K < 2$. Let $\pi_1: K \to \mu^{-1}(t)$ and $\pi_2: K \to X$ be the coordinate projections. The point inverses under π_1 are tree-like continua and the point inverses under π_2 are arcs or points by Lemma 2.3. In particular, the point inverses of π_1 and π_2 have trivial shape. By a theorem of Sher [12] $\mu^{-1}(t)$ and X have the same shape since π_1 and π_2 are cell-like mappings between finite dimensional spaces. By the theorem of Case and Chamberlin [2] $\mu^{-1}(t)$ is tree-like.

By Theorem 2.2 X has the covering property hereditarily. Therefore, by [9, p. 510] $\mu^{-1}(t)$ is hereditarily irreducible and, hence, $\mu^{-1}(t)$ is atriodic. This completes the proof of the theorem.

Corollary 2.5. If X is an atriodic tree-like continuum, then $C(X)$ is 2-dimensional.

3. The fixed point theorem. In [3] Fugate and McLean proved the following two results.

Theorem 3.1 [3, 1.5]. Tree-like continua have the fixed point property for periodic homeomorphisms.
Theorem 3.2 [3, 3.3]. Hereditarily indecomposable tree-like continua have the fixed point property for pointwise periodic homeomorphisms.

In this section we extend Theorem 3.2 to the case of atriodic tree-like continua. In our argument we use Theorem 2.4 and follow the argument given in [3]. First we prove the following lemma.

Lemma 3.3. If \(M \) is an atriodic, hereditarily unicoherent continuum and if \(h: M \to M \) is a pointwise periodic homeomorphism, then the induced homeomorphism \(\tilde{h}: C(M) \to C(M) \) which is defined by \(\tilde{h}(Y) = h(Y) \) for each \(Y \in C(M) \) is pointwise periodic. Moreover, if \(x \in A \subset C(M) \) and \(h^n(x) = x \), then \(\tilde{h}^2n(A) = A \).

Proof. Let \(x \in A \subset C(M) \) and suppose \(h^n(x) = x \). If \(y \in A \) then there is a unique continuum \(B_y \) in \(M \) which is irreducible from \(x \) to \(y \) since \(M \) is hereditarily unicoherent. Then \(B_y \subset A \) and \(A = \bigcup \{ B_y \mid y \in A \} \). Let \(y \in A \setminus \{ x \} \) and let \(B = B_y \). It suffices to show that \(h^n(B) = B \). Suppose \(h^n(B) \neq B \). If \(B \subsetneq h^n(B) \) let \(z \in h^n(B) \setminus B \). Then \(h^n(z) \in h^{i+1}(B) \setminus h^i(B) \) for each \(i \). Since \(h^n(B) \subset h^{i+1}(B) \) for each positive integer \(i \) this would imply \(z \) has infinite order under \(h \) and so would contradict the pointwise periodicity of \(h \). Thus, \(B \subsetneq h^n(B) \). Similarly, \(h^n(B) \subsetneq B \). Notice that \(h^n(y) \notin B \) since \(B \cap h^n(B) \) is a proper subcontinuum of \(h^n(B) \) and \(h^n(B) \) is irreducible between \(h^n(x) = x \) and \(h^n(y) \). Similarly, \(h^n(y) \notin h^{2n}(B) \), \(h^{2n}(y) \subset B \cup h^n(B) \) and \(y \notin h^n(B) \cup h^{2n}(B) \). By Sorgenfrey's theorem [13, 1.8] \(M \) contains a triod. This is a contradiction. Thus, we have proved \(B = h^{2n}(B) \) and, hence, \(A = \tilde{h}^{2n}(A) \).

Theorem 3.4. Suppose \(M \) is an atriodic tree-like continuum and \(h: M \to M \) is a pointwise periodic homeomorphism. Then \(h \) has a fixed point.

Proof. Suppose \(h \) does not have a fixed point. We may suppose \(M \) is minimal with respect to being mapped into itself. Hence, \(M \) is not a point and if \(Y \) is a proper subcontinuum of \(M \), \(h(Y) \not\subset Y \).

Let \(\mu \) be a Whitney map for \(M \). We may suppose \(\mu(M) = 1 \). Let \(\hat{h}: C(M) \to C(M) \) be the map induced by \(h \).

For \(x \in M \) let \(O(x) = \min_{n>0} (h^n(x) = x) \). Let \(J_i = \{ x \in M \mid O(x) < i \} \). Then \(J_i \) is closed and \(M = J_1 \cup J_2 \cup \ldots \). By the Baire Category Theorem there exists \(n \) such that \(J_n \) has nonvoid interior in \(M \). From the above it follows that there exists \(s \) with \(0 < s < 1 \) such that if \(K \in \mu^{-1}(s, 1] \) then \(K \cap J_n \neq \emptyset \).

Define \(\sigma: C(M) \to [0, 1] \) by

\[
\sigma(A) = \max \{ \mu(\tilde{h}(A)) \mid 1 < i < 2n! \}.
\]

Then \(\sigma \) is clearly a Whitney map for \(M \) such that if \(\mu(A) > s \) then \(\sigma(\tilde{h}(A)) = \sigma(A) \). Since \(\mu^{-1}(1) = \sigma^{-1}(1) = \{ M \} \) there exists \(0 < t < 1 \) such that \(\sigma(A) > t \) implies \(\mu(A) > s \).

By Theorem 2.4 \(\sigma^{-1}(t) \) is a tree-like continuum in \(C(M) \). The restriction of \(\tilde{h} \) to \(\sigma^{-1}(t) \) is a periodic homeomorphism of \(\sigma^{-1}(t) \) (of period \(< 2n! \)). By Theorem 3.1 \(\tilde{h}(A) = A \) for some \(A \in \sigma^{-1}(t) \). This contradicts the assumption at the beginning of the proof that \(\tilde{h}(Y) \not\subset Y \) for each proper subcontinuum \(Y \) of \(M \).
Question. Is Theorem 3.4 true for tree-like continua which do not contain \(n \)-ods for arbitrarily large \(n \)?

References

Department of Mathematics, University of Alabama in Birmingham, Birmingham, Alabama 35294

Department of Mathematics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0