On atriodic tree-like continua
HTML articles powered by AMS MathViewer
- by Lex G. Oversteegen and E. D. Tymchatyn
- Proc. Amer. Math. Soc. 83 (1981), 201-204
- DOI: https://doi.org/10.1090/S0002-9939-1981-0620013-2
- PDF | Request permission
Abstract:
D. P. Bellamy has recently shown that atriodic tree-like continua do not have the fixed point property for homeomorphisms. J. B. Fugate and T. B. McLean showed that hereditarily indecomposable tree-like continua have the fixed point property for pointwise periodic homeomorphisms. In this paper the latter result is extended to the case of atriodic tree-like continua. In the course of the proof it is shown that the property of being an atriodic tree-like continuum is a Whitney property. In particular, it is shown that the hyperspace of an atriodic tree-like continuum is at most $2$-dimensional.References
- David P. Bellamy, A tree-like continuum without the fixed-point property, Houston J. Math. 6 (1980), no. 1, 1–13. MR 575909
- J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960), 73–84. MR 111000
- J. B. Fugate and T. B. McLean, Compact groups of homeomorphisms on tree-like continua, Trans. Amer. Math. Soc. 267 (1981), no. 2, 609–620. MR 626493, DOI 10.1090/S0002-9947-1981-0626493-5
- J. Grispolakis and E. D. Tymchatyn, Continua which are images of weakly confluent mappings only. I, Houston J. Math. 5 (1979), no. 4, 483–502. MR 567908 —, On confluent mappings and essential mappings, Rocky Mountain J. Math. (to appear).
- J. Krasinkiewicz, On the hyperspaces of hereditarily indecomposable continua, Fund. Math. 84 (1974), no. 3, 175–186. MR 350711, DOI 10.4064/fm-84-3-175-186
- J. Krasinkiewicz, On the hyperspaces of snake-like and circle-like continua, Fund. Math. 83 (1974), no. 2, 155–164. MR 418058, DOI 10.4064/fm-83-2-155-164
- Sam B. Nadler Jr., Whitney-reversible properties, Fund. Math. 109 (1980), no. 3, 235–248. MR 597070, DOI 10.4064/fm-109-3-235-248
- Sam B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR 0500811
- A. R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. MR 0394604
- James T. Rogers Jr., Applications of a Vietoris-Begle theorem for multi-valued maps to the cohomology of hyperspaces, Michigan Math. J. 22 (1975), no. 4, 315–319 (1976). MR 397678
- Richard B. Sher, Realizing cell-like maps in Euclidean space, General Topology and Appl. 2 (1972), 75–89. MR 303546
- R. H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. 66 (1944), 439–460. MR 10968, DOI 10.2307/2371908
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 201-204
- MSC: Primary 54F20; Secondary 54B20, 54F50, 54H25
- DOI: https://doi.org/10.1090/S0002-9939-1981-0620013-2
- MathSciNet review: 620013