On splitting augmentation ideals
HTML articles powered by AMS MathViewer
- by Warren Dicks
- Proc. Amer. Math. Soc. 83 (1981), 221-227
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624902-4
- PDF | Request permission
Abstract:
Let $G$ be a group, $H$ a subgroup of $G$ and $R$ an associative ring. Write $\omega (RG)$ for the augmentation ideal of the group ring $RG$, and $\omega (RH)G$ for the right ideal of $RG$ generated by $\omega (RH)$. For $G$ finitely generated over $H$ we characterize, in terms of the Bass-Serre theory of groups acting on trees, the situation where $\omega (RH)G$ is an $RG$-summand of $\omega (RG)$.References
- Daniel E. Cohen, Groups of cohomological dimension one, Lecture Notes in Mathematics, Vol. 245, Springer-Verlag, Berlin-New York, 1972. MR 0344359
- Warren Dicks, Groups, trees and projective modules, Lecture Notes in Mathematics, vol. 790, Springer, Berlin, 1980. MR 584790
- M. J. Dunwoody, Accessibility and groups of cohomological dimension one, Proc. London Math. Soc. (3) 38 (1979), no. 2, 193–215. MR 531159, DOI 10.1112/plms/s3-38.2.193
- M. J. Dunwoody, Recognizing free factors, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 245–249. MR 564429
- Karl W. Gruenberg, Relation modules of finite groups, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 25, American Mathematical Society, Providence, R.I., 1976. MR 0457538
- Jacques Lewin, On the intersection of augmentation ideals, J. Algebra 16 (1970), 519–522. MR 274596, DOI 10.1016/0021-8693(70)90005-0 J.-P. Serre, Arbres, amalgames et ${\text {S}}{{\text {L}}_2}$, Astérisque No. 46, Société Math. de France, 1977.
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 221-227
- MSC: Primary 16A27
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624902-4
- MathSciNet review: 624902