The sum-product splitting property and injective direct sums of modules over von Neumann regular rings
HTML articles powered by AMS MathViewer
- by Birge Zimmermann-Huisgen
- Proc. Amer. Math. Soc. 83 (1981), 251-254
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624908-5
- PDF | Request permission
Abstract:
Let ${({M_i})_{i \in I}}$ be a family of modules over a von Neumann regular ring. It is shown that for the splitness of the canonical inclusion ${ \oplus _{i \in I}}{M_i} \subset \prod \nolimits _{i \in I} {{M_i}}$ it is necessary and sufficient that there be a finite subset $I’$ of $I$ such that the restricted sum ${ \oplus _{i \in I\backslash I’}}{M_i}$ is semisimple with finitely many homogeneous components, all simple summands being finite dimensional over their endomorphism rings. This yields a characterization of those families of injectives whose direct sum is again injective.References
- Carl Faith, Modules finite over endomorphism ring, Lectures on rings and modules (Tulane Univ. Ring and Operator Theory Year, 1970–1971, Vol. I), Lecture Notes in Math., Vol. 246, Springer, Berlin, 1972, pp. 145–189. MR 0342541
- K. R. Goodearl, von Neumann regular rings, Monographs and Studies in Mathematics, vol. 4, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 533669
- Phillip Griffith, A note on a theorem of Hill, Pacific J. Math. 29 (1969), 279–284. MR 245613
- Laurent Gruson and Christian U. Jensen, Deux applications de la notion de $L$-dimension, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 1, Aii, A23–A24. MR 401880
- Helmut Lenzing, Direct sums of projective modules as direct summands of their direct product, Comm. Algebra 4 (1976), no. 7, 681–691. MR 404335, DOI 10.1080/00927877608822130
- Jeffrey Levine, On the injective hulls of semisimple modules, Trans. Amer. Math. Soc. 155 (1971), 115–126. MR 306263, DOI 10.1090/S0002-9947-1971-0306263-1
- B. Sarath and K. Varadarajan, Injectivity of direct sums, Comm. Algebra 1 (1974), 517–530. MR 346011, DOI 10.1080/00927877408548720
- Wolfgang Zimmermann, Rein injektive direkte Summen von Moduln, Comm. Algebra 5 (1977), no. 10, 1083–1117 (German). MR 450327, DOI 10.1080/00927877708822211
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 251-254
- MSC: Primary 16A52; Secondary 16A30
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624908-5
- MathSciNet review: 624908