Hypercodes, right convex languages and their syntactic monoids
HTML articles powered by AMS MathViewer
- by G. Thierrin
- Proc. Amer. Math. Soc. 83 (1981), 255-258
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624909-7
- PDF | Request permission
Abstract:
If ${X^ * }$ is the free monoid generated by the alphabet $X$, then any subset $L$ of ${X^ * }$ is called a language over $X$. If ${P_L}$ is the principal congruence determined by $L$, then the quotient monoid ${\text {syn}}(L) = {X^ * }/{P_L}$ is called the syntactic monoid of $L$. A hypercode over $X$ is any set of nonemtpy words that are noncomparable with respect to the embedding order of ${X^ * }$. If $H$ is a hypercode, then the language $\tilde H = \{ x|x \in {X^ * }$ and $a \leqslant x$ for some $a \in H\}$ is a right convex ideal of ${X^ * }$. The syntactic monoid ${\text {syn}}(\tilde H)$ can be characterized as a monoid with a disjunctive $\mu$-zero. The two particular interesting cases when ${\text {syn}}(\tilde H)$ is a nil monoid and when ${\text {syn}}(\tilde H)$ is a semillatice are also characterized.References
- Leonard H. Haines, On free monoids partially ordered by embedding, J. Combinatorial Theory 6 (1969), 94–98. MR 240016
- Graham Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. (3) 2 (1952), 326–336. MR 49867, DOI 10.1112/plms/s3-2.1.326 M. P. Jullien, Sur un théorème d’extension dans la théorie des mots, C. R. Acad. Sci. Paris Sér. A 266 (1968), 651-654.
- H. Jürgensen, Inf-Halbverbände als syntaktische Halbgruppen, Acta Math. Acad. Sci. Hungar. 31 (1978), no. 1-2, 37–41 (German). MR 489043, DOI 10.1007/BF01896072
- Gérard Lallement, Semigroups and combinatorial applications, Pure and Applied Mathematics, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR 530552
- B. M. Schein, Homomorphisms and subdirect decompositions of semi-groups, Pacific J. Math. 17 (1966), 529–547. MR 197603
- H. J. Shyr and G. Thierrin, Hypercodes, Information and Control 24 (1974), 45–54. MR 345712
- G. Thierrin, Convex languages, Automata, languages and programming (Proc. Sympos., Rocquencourt, 1972) North-Holland, Amsterdam, 1973, pp. 481–492. MR 0375851
- G. Thierrin, The syntactic monoid of a hypercode, Semigroup Forum 6 (1973), no. 3, 227–231. MR 376935, DOI 10.1007/BF02389125
- G. Thierrin, Decomposition of some classes of subsets in a semigroup, Semigroups (Proc. Conf., Math. Res. Inst., Oberwolfach, 1978) Lecture Notes in Math., vol. 855, Springer, Berlin, 1981, pp. 182–188. MR 618855
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 255-258
- MSC: Primary 20M35; Secondary 68F05
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624909-7
- MathSciNet review: 624909