$X$-inner automorphisms of filtered algebras
HTML articles powered by AMS MathViewer
- by Susan Montgomery
- Proc. Amer. Math. Soc. 83 (1981), 263-268
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624911-5
- PDF | Request permission
Abstract:
For the enveloping algebra of a finite-dimensional Lie algebra, and for the ring of differential polynomials over a commutative domain, we compute the group of those automorphisms which become inner when extended to the quotient division rings. Both of these results depend on a more general result about the automorphisms of a filtered algebra.References
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- Jan Krempa, On invariant subspaces of locally finite derivations, Bull. London Math. Soc. 12 (1980), no. 5, 374–376. MR 587709, DOI 10.1112/blms/12.5.374
- Wallace S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584. MR 238897, DOI 10.1016/0021-8693(69)90029-5
- Wallace S. Martindale III and Susan Montgomery, The normal closure of coproducts of domains, J. Algebra 82 (1983), no. 1, 1–17. MR 701033, DOI 10.1016/0021-8693(83)90170-9
- Susan Montgomery, Outer automorphisms of semi-prime rings, J. London Math. Soc. (2) 18 (1978), no. 2, 209–220. MR 509936, DOI 10.1112/jlms/s2-18.2.209
- Susan Montgomery and D. S. Passman, Crossed products over prime rings, Israel J. Math. 31 (1978), no. 3-4, 224–256. MR 516150, DOI 10.1007/BF02761494
- Susan Montgomery and D. S. Passman, $X$-inner automorphisms of group rings, Houston J. Math. 7 (1981), no. 3, 395–402. MR 640981
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 263-268
- MSC: Primary 16A03; Secondary 17B40
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624911-5
- MathSciNet review: 624911