Weighted inequalities for the disc multiplier
HTML articles powered by AMS MathViewer
- by Kenneth F. Andersen
- Proc. Amer. Math. Soc. 83 (1981), 269-275
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624912-7
- PDF | Request permission
Abstract:
Charles Fefferman has shown that the disc multiplier is not a bounded operator on ${L^p}({{\mathbf {R}}^n})$, $n > 1$, $p \ne 2$. On the other hand, Carl Herz has shown that when this operator is restricted to radial functions in ${{\mathbf {R}}^n}$, it is bounded in ${L^p}({{\mathbf {R}}^n})$ provided $p$ satisfies $2n/(n + 1) < p < 2n/(n - 1)$. In this paper, sufficient conditions on the weight function $\omega$ are given in order that the disc multiplier restricted to radial functions should be bounded in ${L^p}({{\mathbf {R}}^n},\omega (\left | x \right |))$. When applied to power weights $\omega (r) = {r^\alpha }$ these conditions are also necessary.References
- Kenneth F. Andersen and Benjamin Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), no. 1, 9–26. MR 665888, DOI 10.4064/sm-72-1-9-26
- Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, DOI 10.2307/1970864
- Carl S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996–999. MR 63477, DOI 10.1073/pnas.40.10.996
- I. I. Hirschman Jr., Multiplier transformations. II, Duke Math. J. 28 (1961), 45–56. MR 124693
- Carlos E. Kenig and Peter A. Tomas, The weak behavior of spherical means, Proc. Amer. Math. Soc. 78 (1980), no. 1, 48–50. MR 548082, DOI 10.1090/S0002-9939-1980-0548082-8 B. Muckenhoupt, Hardy’s inequalities with weights, Studia Math. 44 (1972), 31-38.
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- E. M. Stein, Some problems in harmonic analysis, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–20. MR 545235
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972 G. N. Watson, Theory of Bessel functions, Cambridge Univ. Press, London, 1966.
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 269-275
- MSC: Primary 42B15
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624912-7
- MathSciNet review: 624912