A simple constructive proof of an analogue of the corona theorem
HTML articles powered by AMS MathViewer
- by Michael von Renteln
- Proc. Amer. Math. Soc. 83 (1981), 299-303
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624918-8
- PDF | Request permission
Abstract:
We present a simple and constructive proof (i.e. a proof without using Gelfand theory) of an analogue of the Corona theorem for the Wiener algebras $W$ and ${W^ + }$ of absolutely convergent Fourier and Taylor series respectively, also the disc algebra $A(\overline D )$ and the subalgebras ${A^n}(\overline D )$ of functions whose $n$th derivatives extend continuously to $\overline D = \{ z:\left | z \right | \leqslant 1\}$.References
- Lennart Carleson, On bounded analytic functions and closure problems, Ark. Mat. 2 (1952), 283–291. MR 52506, DOI 10.1007/BF02590884
- Paul J. Cohen, A note on constructive methods in Banach algebras, Proc. Amer. Math. Soc. 12 (1961), 159–163. MR 124515, DOI 10.1090/S0002-9939-1961-0124515-4
- V. I. Gavrilov and G. D. Lëvšina, Linear functionals over Lipschitz spaces of holomorphic functions in the unit disc, Dokl. Akad. Nauk SSSR 239 (1978), no. 1, 30–33 (Russian). MR 0473799
- A. L. Matheson, Closed ideals in rings of analytic functions satisfying a Lipschitz condition, Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976) Lecture Notes in Math., Vol. 604, Springer, Berlin, 1977, pp. 67–72. MR 0463926
- D. J. Newman, A simple proof of Wiener’s $1/f$ theorem, Proc. Amer. Math. Soc. 48 (1975), 264–265. MR 365002, DOI 10.1090/S0002-9939-1975-0365002-8
- Jürgen Spilker, A simple proof of an analogue of Wiener’s $1/f$ theorem, Arch. Math. (Basel) 32 (1979), no. 3, 265–266. MR 541624, DOI 10.1007/BF01238498
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 299-303
- MSC: Primary 46J15; Secondary 30H05
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624918-8
- MathSciNet review: 624918