Kleinian groups of divergence type
HTML articles powered by AMS MathViewer
- by P. J. Nicholls
- Proc. Amer. Math. Soc. 83 (1981), 319-324
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624922-X
- PDF | Request permission
Abstract:
For a Kleinian group $\Gamma$ acting in the unit ball $B$ we consider the series ${\Sigma _{\gamma \in \Gamma }}{(1 - \left | {\gamma (0)} \right |)^2}$. If the series diverges, $\Gamma$ is said to be of divergence type. From the point of view of the ergodic properties of the group action it is essential to know whether or not $\Gamma$ is of divergence type. If $\Gamma$ is geometrically finite then $\Gamma$ is of divergence type if and only if it is of the first kind. However in the nongeometrically finite case it is not known whether there are any groups of divergence type. In this paper we give a geometric criterion which is sufficient to ensure divergence type and use this to construct an example of a nongeometrically finite Kleinian group of divergence type.References
- Lars V. Ahlfors, Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 251–254. MR 194970, DOI 10.1073/pnas.55.2.251
- A. F. Beardon and P. J. Nicholls, On classical series associated with Kleinian groups, J. London Math. Soc. (2) 5 (1972), 645–655. MR 320305, DOI 10.1112/jlms/s2-5.4.645
- Bernard Maskit, On Poincaré’s theorem for fundamental polygons, Advances in Math. 7 (1971), 219–230. MR 297997, DOI 10.1016/S0001-8708(71)80003-8
- Peter J. Nicholls, Fundamental regions and the type problem for a Riemann surface, Math. Z. 174 (1980), no. 2, 187–196. MR 592914, DOI 10.1007/BF01293537
- Burton Rodin and Leo Sario, Principal functions, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968. In collaboration with Mitsuru Nakai. MR 0229812
- L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, Band 164, Springer-Verlag, New York-Berlin, 1970. MR 0264064
- Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465–496. MR 624833
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 319-324
- MSC: Primary 30F40; Secondary 20H10
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624922-X
- MathSciNet review: 624922