A characterization of complete metric spaces
HTML articles powered by AMS MathViewer
- by Francis Sullivan
- Proc. Amer. Math. Soc. 83 (1981), 345-346
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624927-9
- PDF | Request permission
Abstract:
A general formulation of the completeness argument used in the Bishop-Phelps Theorem and many other places has been given by Ekeland. It is shown that Ekeland’s formulation characterizes complete metric spaces.References
- H. Brézis and F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (1976), no. 3, 355–364. MR 425688, DOI 10.1016/S0001-8708(76)80004-7
- James Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251. MR 394329, DOI 10.1090/S0002-9947-1976-0394329-4
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. MR 346619, DOI 10.1016/0022-247X(74)90025-0
- Ivar Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 443–474. MR 526967, DOI 10.1090/S0273-0979-1979-14595-6
- W. A. Kirk, Caristi’s fixed point theorem and the theory of normal solvability, Fixed point theory and its applications (Proc. Sem., Dalhousie Univ., Halifax, N.S., 1975) Academic Press, New York, 1976, pp. 109–120. MR 0454754
- W. A. Kirk, Caristi’s fixed point theorem and metric convexity, Colloq. Math. 36 (1976), no. 1, 81–86. MR 436111, DOI 10.4064/cm-36-1-81-86
- R. R. Phelps, Support cones in Banach spaces and their applications, Advances in Math. 13 (1974), 1–19. MR 338741, DOI 10.1016/0001-8708(74)90062-0
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 345-346
- MSC: Primary 54E50; Secondary 54C30
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624927-9
- MathSciNet review: 624927