COMPOSING FUNCTIONS OF BOUNDED VARIATION

MICHAEL JOSEPHY

Abstract. We find necessary and sufficient conditions on \(g \) such that \(f \circ g \) (resp. \(g \circ f \)) is a function of bounded variation for all \(f \) of bounded variation.

Let \(I = [0, 1] \), and let \(BV \) denote the set of functions \(f : I \to I \) of bounded variation. \(BV \) is not closed under composition (example: \(f \circ g \) where \(f(x) = \sqrt{x} \); \(g(0) = 0, g(x) = x^2 \sin^2(1/x) \) for \(x \neq 0 \)). Here we characterize those functions \(g \) whose right (resp. left) composition operation \(f \to f \circ g \) (resp. \(f \to g \circ f \)) preserves \(BV \).

If \(f : I \to \mathbb{R} \), define \(v(f, a, b) \) as the variation of \(f \) on the subinterval \([a, b]\), and \(v(f) = v(f, 0, 1) \). For a positive integer \(N \), let \(J_N = \{X \subseteq I: X \text{ can be expressed as a union of } N \text{ intervals} \} \) (where the intervals may be open or closed at either end and we allow singletons as degenerate closed intervals). Since any interval is a union of two subintervals, we see \(J_N \subseteq J_{N+1} \). A function \(f : I \to \mathbb{R} \) is said to be of \(N \)-bounded variation if \(f^{-1}([a, b]) \in J_N \) for all \([a, b] \subseteq \mathbb{R} \). Let \(BV(N) \) be the set of all functions \(f : I \to I \) of \(N \)-bounded variation, and \(BV'(N) \) the set of all bounded functions \(f : I \to \mathbb{R} \) of \(N \)-bounded variation.

Lemma 1. Every function in \(BV'(N) \) is of bounded variation.

Proof. Suppose \(h \in BV'(N) \) and \(|h(x)| < M \) for all \(x \in I \). We show \(v(h) < 4M(N + 1) \). If \(v(h) > 4M(N + 1) \), then there exists a partition \(\{x_0, \ldots, x_n\} \) of \(I \) with

\[
\sum_{i=1}^{n} |h(x_i) - h(x_{i-1})| > 4M(N + 1).
\]

Some \([a', b'] \subseteq [-M, M]\) with \(a' < b' \) is covered more than \(2(N + 1) \) times by intervals \([h(x_{i-1}), h(x_i)]\) or \([h(x_i), h(x_{i-1})]\). At least \(N + 1 \) are of the type \([h(x_{i-1}), h(x_i)]\), say, so

\[
[a', b'] \subseteq \bigcap_{j=1}^{N+1} [h(y_j), h(z_j)]
\]

where each \((y_j, z_j) = (x_{i-1}, x_i)\) for some \(i \), and \(y_1 < z_1 < \cdots < y_{N+1} < z_{N+1} \). Then \(h(y_j) < a' < b' < h(z_j) \) for all \(j \). Take \(a \) between \(a' \) and \(b' \); take \(b \) greater than
COMPOSING FUNCTIONS OF BOUNDED VARIATION

every \(h(z_j) \). Then \(h(y_j) \notin [a, b] \), \(h(z_j) \in [a, b] \) for all \(j \). Hence \(h^{-1}([a, b]) \) is union of no fewer than \(N + 1 \) intervals, and so is not in \(J_N \), a contradiction. \(\cdot \) \(h \) is of bounded variation.

Lemma 2. Let \(h_i : I \to I \), \(i = 1, 2, \ldots \), be functions which assume only the values 0 and 3\(^i\). If \(h = \sum_{i=1}^{\infty} h_i \), then \(\nu(h) > \frac{1}{6} \sum_{i=1}^{\infty} \nu(h_i) \). In particular, if some \(h_i \notin BV \), then \(h \notin BV \).

Proof. Let \(p \) be a discontinuity of \(h_i \) which is not a discontinuity of \(h_j \) for \(j < i \). Then \(p \) is a discontinuity of \(h \), contributing a jump of at least \(3^{-i} - \sum_{j=1}^{i-1} 3^{-j} = \frac{1}{2} 3^{-i} \) in \(h \), but contributing no more than \(2 \sum_{j=i}^{\infty} 3^{-j} = 3^{-i+1} \) to \(\sum \nu(h_j) \). If each \(h_i \in BV \), i.e. has only a finite number of discontinuities, the inequality follows. Otherwise some \(h_i \) has infinitely many discontinuities, and \(\nu(h) = \nu(h_i) = \infty \).

Theorem 3. For \(g : I \to I \), the composition \(f \circ g \) belongs to \(BV \) for all \(f \in BV \) iff \(g \in BV(N) \) for some \(N \).

Proof. **Sufficiency.** Suppose \(f : I \to R \) is increasing, and \(g \in BV(N) \). Then \(f \circ g \in BV(N) \) because \(f^{-1}([a, b]) = [f^{-1}(a), f^{-1}(b)] \), and hence \((f \circ g)^{-1}([a, b]) \in J_N \) for all \(a, b \). Moreover, any \(f \in BV \) can be expressed as a difference of two increasing functions \(f = f_1 - f_2 \), and since \(f_1 \circ g, f_2 \circ g \in BV(N) \), we have \(f \circ g = f_1 \circ g - f_2 \circ g \in BV \), using Lemma 1.

Necessity. Suppose for all \(N \), \(g \in BV(N) \). Find intervals \(J_n \subseteq I \), \(n = 1, 2, \ldots \), such that \(g^{-1}(J_n) \notin J_n \), i.e. \(g^{-1}(J_n) \) cannot be expressed as a union of \(3^n \) intervals. Define \(f_n = 3^{-n} \chi_{J_n} \), and \(f = \sum_{n=1}^{\infty} f_n \). Since \(\nu(f_n) < 2 \cdot 3^{-n} \), we have \(\nu(f) < \sum \nu(f_n) < 2 \sum 3^{-n} < \infty \), so \(f \in BV \). On the other hand, \(f_n \circ g = 3^{-n} \chi_{g^{-1}(J_n)} \), so \(\nu(f_n \circ g) > 2 \cdot 3^{-n} \cdot 3^n = 2 \). By Lemma 2, \(\nu(f \circ g) = \infty \), i.e. \(f \circ g \notin BV \).

Theorem 4. For \(g : I \to I \), the composition \(g \circ f \) belongs to \(BV \) for all \(f \in BV \) iff \(g \) satisfies a Lipschitz condition on \(I \).

Proof. **Sufficiency.** Suppose \(|g(y) - g(z)| < M|y - z| \) for all \(y, z \in I \), and suppose \(f \in BV \) with \(\nu(f) = L \). If \(P = \{x_0, \ldots, x_n\} \) is a partition of \(I \),

\[
\sum_P |\Delta(g \circ f)| < \sum_{i=1}^{n} M|f(x_i) - f(x_{i-1})| < LM,
\]

so \(g \circ f \in BV \).

Necessity. If \(g \) does not satisfy a Lipschitz condition on \(I \), there exist \(y_n'' < z_n'' \) with \(|g(y_n'') - g(z_n'')| > (n^2 + n)|y_n'' - z_n''| \) for any \(n = 1, 2, \ldots \). Since \(I \) is compact, there is a convergent subsequence \(\{y_n'\} \) of \(\{y_n''\} \). Say \(y_n' \to y \). Take a further subsequence \(\{y_n\} \) with \(|y - y_n| < (n + 1)^{-2} \). Take \(\{z_n\} \) to be the corresponding subsequence of \(\{z_n''\} \), and \(\delta_n = |y_n - z_n| \). We have \(|g(y_n) - g(z_n)| > (n^2 + n)\delta_n \), and hence \(\delta_n < (n^2 + n)^{-1} \).

Define \(f \) by \(f(0) = 0, f(1) = y_1 \), while on \([n + 1]^{-1}, n^{-1} \),

\[
f(x) = \begin{cases} y_n & \text{if } x - (n + 1)^{-1} \text{ is a multiple of } \delta_n, \\ z_n & \text{otherwise.} \end{cases}
\]
For a fixed \(n \), let \(m' = \delta_n^{-1}(n^2 + n)^{-1} \), and \(m = \max\{k \in \mathbb{Z}: k < m'\} \). Since \(m' > 1 \), we have \(m'/2 < m < m' \). Consider the partition \(P \) of \([(n + 1)^{-1}, n^{-1}]\):

\[
P = \left\{ (n + 1)^{-1} + \frac{1}{2} r \delta_n: r = 0, 1, \ldots, 2m \right\} \cup \left\{ n^{-1} \right\}.
\]

Then

\[
\sum_{P} |\Delta(g \circ f)| > 2m|g(y_n) - g(z_n)| > m'(n^2 + n)\delta_n = 1,
\]

so \(v(g \circ f, (n + 1)^{-1}, n^{-1}) > 1 \): whence \(g \circ f \notin \text{BV} \).

On the other hand, since \(f \) is a step function on \([(n + 1)^{-1}, n^{-1}]\),

\[
v(f, (n + 1)^{-1}, n^{-1}) = 2m|y_n - z_n| + |y_{n-1} - t_n| \quad \text{where } t_n = y_n \text{ or } z_n
\]

\[
< 2m'\delta_n + |y_{n-1} - y| + |y - y_n| + |y_n - z_n|
\]

\[
< 2(n^2 + n)^{-1} + n^{-2} + (n + 1)^{-2} + n^{-2} < 5n^{-2}.
\]

Since \(\sum n^{-2} \) converges, \(f \in \text{BV} \).

Chaika and Waterman [1] obtained a theorem analogous to our Theorem 4, but for certain classes larger than \(\text{BV} \). Interestingly, they found the Lipschitz condition to be necessary and sufficient in those cases as well.

References

Escuela de Matemática, Universidad de Costa Rica, San José, Costa Rica