Probabilities of moderate deviations in a Banach space
HTML articles powered by AMS MathViewer
- by Chandrakant M. Deo and Gutti Jogesh Babu
- Proc. Amer. Math. Soc. 83 (1981), 392-397
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624938-3
- PDF | Request permission
Abstract:
We obtain probabilities of moderate deviations for i.i.d. sequences taking values in a separable Banach space under precise necessary and sufficient conditions. The results obtained are new even on the real line.References
- R. R. Bahadur and S. L. Zabell, Large deviations of the sample mean in general vector spaces, Ann. Probab. 7 (1979), no. 4, 587–621. MR 537209
- A. A. Borovkov and A. A. Mogul′skiĭ, Probabilities of large deviations in topological spaces. I, Sibirsk. Mat. Zh. 19 (1978), no. 5, 988–1004, 1213 (Russian). MR 508496 H. Cramér, Sur un nouveau théorème limite de la probabilité, Actualités Sci. Indust. 736 (1938), 5-23.
- William Feller, An introduction to probability theory and its applications. Vol. II. , 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
- Tze Leung Lai, Limit theorems for delayed sums, Ann. Probability 2 (1974), 432–440. MR 356193, DOI 10.1214/aop/1176996658
- Tze Leung Lai, On $r$-quick convergence and a conjecture of Strassen, Ann. Probability 4 (1976), no. 4, 612–627. MR 431326, DOI 10.1214/aop/1176996031
- Herman Rubin and J. Sethuraman, Probabilities of moderatie deviations, Sankhyā Ser. A 27 (1965), 325–346. MR 203783
- A. D. Slastnikov, Limit theorems for probabilities of moderate deviations, Teor. Verojatnost. i Primenen. 23 (1978), no. 2, 340–357 (Russian, with English summary). MR 0488238
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 392-397
- MSC: Primary 60F10; Secondary 60B12
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624938-3
- MathSciNet review: 624938