Inverse limits which are not hereditarily indecomposable
HTML articles powered by AMS MathViewer
- by Alice Mason, John J. Walsh and David C. Wilson
- Proc. Amer. Math. Soc. 83 (1981), 403-407
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624941-3
- PDF | Request permission
Abstract:
Let $X$ be the limit of an inverse sequence $\left \{ {M_i^n,{f_i}} \right \}$ of closed, connected PL $n$-manifolds with $n \geqslant 2$. It is shown that if either (1) each $M_i^n$ is orientable, each ${f_i}$ has nonzero degree, and ${\sup _i}\left \{ {{\text {rank}}\;{H_1}(M_i^n,{\mathbf {Z}})} \right \} < \infty \;{\text {or}}\;{\text {(2)}}\;{\text {de}}{{\text {g}}_{{\mathbf {Z}}/2{\mathbf {Z}}}}{f_i} \ne 0$ for each $i$ and ${\sup _i}\left \{ {{\text {rank}}\;{H_1}(M_i^n,{\mathbf {Z}}/2{\mathbf {Z}})} \right \} < \infty$, then $X$ is not hereditarily indecomposable.References
- R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43–51. MR 43451
- R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267–273. MR 43452, DOI 10.1090/S0002-9947-1951-0043452-5
- Morton Brown, On the inverse limit of Euclidean $N$-spheres, Trans. Amer. Math. Soc. 96 (1960), 129–134. MR 119182, DOI 10.1090/S0002-9947-1960-0119182-3
- J. Krasinkiewicz, Hereditarily indecomposable representatives of shapes, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978) PWN, Warsaw, 1980, pp. 245–252. MR 656752 M. Smith, Hereditarily indecomposable continua which are inverse limits of $n$-cubes are tree-like (preprint).
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 403-407
- MSC: Primary 54F15; Secondary 57Q99
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624941-3
- MathSciNet review: 624941