Subgroups of compact Lie groups containing a maximal torus are closed
HTML articles powered by AMS MathViewer
- by Dragomir Ž. Djoković
- Proc. Amer. Math. Soc. 83 (1981), 431-432
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624947-4
- PDF | Request permission
Abstract:
We prove the claim made in the title. As a corollary, we obtain that a compact Lie group $G$ has only finitely many subgroups containing a fixed maximal torus. The special case $G = U(n)$ was dealt with in a recent paper of Borevich and Krupeckiĭ.References
- A. Borel and J. De Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200–221 (French). MR 32659, DOI 10.1007/BF02565599
- Z. I. Borevič and S. L. Krupeckiĭ, Subgroups of the unitary group containing the group of diagonal matrices, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 86 (1979), 19–29, 188 (Russian). Algebraic numbers and finite groups. MR 535476
- Morikuni Goto, On an arcwise connected subgroup of a Lie group, Proc. Amer. Math. Soc. 20 (1969), 157–162. MR 233923, DOI 10.1090/S0002-9939-1969-0233923-X
- Joseph A. Wolf, Spaces of constant curvature, 2nd ed., University of California, Department of Mathematics, Berkeley, Calif., 1972. MR 0343213
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 431-432
- MSC: Primary 22E15; Secondary 20G20
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624947-4
- MathSciNet review: 624947