Limit sets of automorphism groups of a tree
HTML articles powered by AMS MathViewer
- by Su Shing Chen
- Proc. Amer. Math. Soc. 83 (1981), 437-441
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624949-8
- PDF | Request permission
Abstract:
Let $X$ be an infinite and locally finite tree and $G$ be an arbitrary automorphism group of $X$. The limit set $L(G)$ of $G$ in the boundary $B$ of $X$ is studied.References
- Pierre Cartier, Géométrie et analyse sur les arbres, Séminaire Bourbaki, 24ème année (1971/1972), Lecture Notes in Math., Vol. 317, Springer, Berlin, 1973, pp. Exp. No. 407, pp. 123–140 (French). MR 0425032
- P. Cartier, Fonctions harmoniques sur un arbre, Symposia Mathematica, Vol. IX (Convegno di Calcolo delle Probabilità & Convegno di Teoria della Turbolenza, INDAM, Rome, 1971) Academic Press, London, 1972, pp. 203–270 (French). MR 0353467
- Su Shing Chen, A theorem of Ahlfors for hyperbolic spaces, Trans. Amer. Math. Soc. 242 (1978), 401–406. MR 496817, DOI 10.1090/S0002-9947-1978-0496817-0
- P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109. MR 336648
- R. S. Kulkarni, Groups with domains of discontinuity, Math. Ann. 237 (1978), no. 3, 253–272. MR 508756, DOI 10.1007/BF01420180
- Ravindra S. Kulkarni, Some topological aspects of Kleinian groups, Amer. J. Math. 100 (1978), no. 5, 897–911. MR 517135, DOI 10.2307/2373952 J. Serre, Arbres, amalgames, $S{L_2}$, Soc. Math. France Astérique, No. 46, 1977.
- Jacques Tits, Sur le groupe des automorphismes d’un arbre, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 188–211 (French). MR 0299534
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 437-441
- MSC: Primary 05C25; Secondary 05C05, 22E50
- DOI: https://doi.org/10.1090/S0002-9939-1981-0624949-8
- MathSciNet review: 624949