On the depth of local rings of invariants of cyclic groups
HTML articles powered by AMS MathViewer
- by John Fogarty
- Proc. Amer. Math. Soc. 83 (1981), 448-452
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627666-3
- PDF | Request permission
Abstract:
For wild actions of a cyclic group $G$ on a local ring $R$, with ${R^G}$ noetherian, it is shown that ${\text {depth}}\;R - {\text {depth}}\;{R^G}$ can be arbitrarily large, even if $R$ is regular and contains $\underline {Z}$.References
- John Fogarty, Kähler differentials and Hilbert’s fourteenth problem for finite groups, Amer. J. Math. 102 (1980), no. 6, 1159–1175. MR 595009, DOI 10.2307/2374183
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620
- Joseph Lipman, Unique factorization in complete local rings, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974) Amer. Math. Soc., Providence, R.I., 1975, pp. 531–546. MR 0374125
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 448-452
- MSC: Primary 13B05; Secondary 13D99
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627666-3
- MathSciNet review: 627666