BANACH SPACES WHICH ALWAYS CONTAIN SUPREMUM-ATTAINING ELEMENTS

PETER D. MORRIS

Abstract. It is proved that if a weakly compactly generated Banach space X has the property that, for every closed, bounded convex subset K of X^*, there exists a nonzero element of X which attains its supremum on K, then X contains no copy of I.

Let X be a Banach space and let A be a bounded subset of its dual. Define

$$SA(A) = \{ x \in X \setminus \{0\} : \hat{x} \text{ attains its supremum on } A \}.$$

Here \hat{x} denotes the image of x under the natural embedding of X in X^{**}. Also define

$$SEX(A) = \{ x \in X : \hat{x} \text{ strongly exposes } A \}.$$

Here, a functional f strongly exposes a set B if the diameter of the slice

$$S(B, f, \alpha) = \{ b \in B : f(b) > \alpha \}$$

approaches 0 as α approaches $\max f(B)$ from below.

In case $A \subset X^*$ is norm-closed we have $SEX(A) \subset SA(A)$. This inclusion is usually proper.

The present work was motivated by the following results.

Theorem A. The dual space X^* has the Radon-Nikodým property if and only if $SEX(A) \neq \emptyset$ for all norm-closed, bounded, convex subsets A of X^*.

Theorem B. The dual space X^* has the Radon-Nikodým property if and only if $SA(A)$ is of 2nd category for all norm-closed, bounded, convex subsets A of X^*.

The reader should refer to [1] or [2] for information on the Radon-Nikodým property (including its definition). Theorem A follows from a result of Namioka and Phelps [4] combined with one of Stegall [7]. Indeed, their results imply that, if X^* has the Radon-Nikodým property and A is a norm-closed, convex subset, then $SEX(A)$ is a dense $G_δ$ subset of X. This fact also proves half of Theorem B. The other half is a very easy modification of an argument due to Bourgain (see [1], [6]).

Theorems A and B, together with a spirit of optimism, led to

Conjecture. If $SA(A) \neq \emptyset$ for all norm-closed, bounded, convex subsets A of X^*, then X^* has the Radon-Nikodým property.

Let us refer to the property of X which is conjectured to imply the RNP in X^* as Property SA^*. Our result is weaker than the one conjectured. We were forced to...
assume that X is weakly compactly generated. This allows a reduction to the separable case. The desired conclusion is that every separable subspace of X has separable dual (that this implies that X^* has the RNP is due to Uhl [8] generalizing Dunford and Pettis [3]). We obtain the weaker conclusion that l^1 does not embed in X.

A lemma is needed.

Lemma. $C[0, 1]$ does not have property SA^*.

Proof. Let (x_n) be a dense sequence in $[0, 1]$. For each $n = 1, 2, \ldots$, let μ_n be the point mass at x_n with total mass $n/(n + 1)$. Let

$$A = \overline{co} \big((\mu_n) \cup (-\mu_n)\big) \subseteq C([0, 1])^*.$$

It is easy to see that

$$\sup \{\langle \mu, f \rangle : \mu \in A \} = \|f\|,$$

for any $f \in C([0, 1])$. Now we show that $\mu \in A$ then μ can be expressed as

$$\mu = \sum_{n=1}^{\infty} a_n \mu_n,$$

where $\sum_{n=1}^{\infty} |a_n| < 1$. To prove this, let T be the map from l^1 into $C([0, 1])^*$ which takes $(a_n) \in l^1$ to $\sum_{n=1}^{\infty} a_n \mu_n \in C([0, 1])^*$. Then T is clearly an isomorphism. Since A is obviously the image, under T, of the unit ball of l^1, (2) holds.

To finish the proof of the Lemma, we will show that no nonzero f in $C([0, 1])$ attains its supremum on A. Suppose the contrary. Then, using (1), there exists f in $C([0, 1])$ and $\mu \in A$ such that

$$\langle \mu, f \rangle = \|f\| > 0.$$

Expressing μ as in (2), we have

$$\|f\| = \langle \mu, f \rangle = \sum_{n=1}^{\infty} a_n \langle \mu_n, f \rangle < \sum_{n=1}^{\infty} |a_n| \langle \mu_n, f \rangle < \sum_{n=1}^{\infty} |a_n| \|f\| < \|f\|.$$

This contradiction completes the proof of the Lemma.

Theorem. Let X be a weakly compactly generated Banach space with property SA^*. Then l^1 does not embed in X.

Proof. We first observe that every quotient of a space with property SA^* also has this property. For, suppose Q is a bounded linear operator from a Banach space Y onto a Banach space Z. Suppose K is a closed, bounded, convex set in Z^* with $SA(K) = \emptyset$. A moment's reflection shows that $SA(Q^*K) = \emptyset$ and so Y fails to have SA^*.

Now suppose that l^1 embeds in X. Since X is weakly compactly generated there is a separable subspace Y of X which contains a copy of l^1 and which is complemented in X. Then Y also has property SA^*. But it follows from a result of
Pelczynski [5] that a separable space containing l^1 has $C[0, 1]$ as a quotient. Hence $C[0, 1]$ has SA^* and we have arrived at a contradiction. This completes the proof.

We are grateful to J. Diestel, S. Fitzpatrick, and J. Rainwater for valuable discussions on the subject of this paper. In particular, it is probable that Fitzpatrick was the first to make the conjecture. We thank the referee for suggestions which led to great improvements in this paper.

REFERENCES

6. J. Rainwater, Univ. of Washington Seminar Notes, Fall 1976.

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802