Traces of BMO-Sobolev spaces
HTML articles powered by AMS MathViewer
- by Robert S. Strichartz
- Proc. Amer. Math. Soc. 83 (1981), 509-513
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627680-8
- PDF | Request permission
Abstract:
The trace operator $RF(x) = F(x,0)$ where $F(x,t)$ is a function of $x \in {{\mathbf {R}}^n}$ and $t \in {{\mathbf {R}}^1}$ maps ${I_\alpha }(BMO)$, the $BMO$-Sobolev space of Riesz potentials of order $\alpha$ of functions of bounded mean oscillation on ${{\mathbf {R}}^{n + 1}}$, onto the homogeneous Besov space $\Lambda _\alpha ^0(\infty ,\infty )$ on ${{\mathbf {R}}^n}$, for $\alpha > 0$. A right inverse is given by the extension operator $Ef(x,t) = {\mathcal {F}^{ - 1}}({e^{ - {t^2}{{\left | \xi \right |}^2}}}\hat f(\xi ))$.References
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190
- Emilio Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284–305 (Italian). MR 102739
- Umberto Neri, Fractional integration on the space $H^{1}$ and its dual, Studia Math. 53 (1975), no. 2, 175–189. MR 388074, DOI 10.4064/sm-53-2-175-189
- Jaak Peetre, Sur les espaces de Besov, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A281–A283 (French). MR 218887
- E. M. Stein, The characterization of functions arising as potentials. II, Bull. Amer. Math. Soc. 68 (1962), 577–582. MR 142980, DOI 10.1090/S0002-9904-1962-10856-8
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Robert S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), no. 4, 539–558. MR 578205, DOI 10.1512/iumj.1980.29.29041
- Alberto Torchinsky and Richard L. Wheeden, On the Marcinkiewicz integral and functions of bounded mean oscillation, Indiana Univ. Math. J. 29 (1980), no. 4, 479–494. MR 578200, DOI 10.1512/iumj.1980.29.29036
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 509-513
- MSC: Primary 46E35
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627680-8
- MathSciNet review: 627680