On complete biorthogonal systems
HTML articles powered by AMS MathViewer
- by Robert M. Young
- Proc. Amer. Math. Soc. 83 (1981), 537-540
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627686-9
- PDF | Request permission
Abstract:
Fundamental to the study of bases in a separable Hilbert space $H$ is the notion of a biorthogonal system. Two sequences $\left \{ {{f_n}} \right \}$ and $\left \{ {{g_n}} \right \}$ of elements from $H$ are said to be biorthogonal if $({f_n},{g_m}) = {\delta _{nm}}$. A complete sequence that possesses a biorthogonal sequence is called exact. Despite the symmetry of the definition of biorthogonality, simple examples show that $\{ {f_n}\}$ may be exact while $\{ {g_n}\}$ fails to be exact. For sequences of complex exponentials in ${L^2}( - \pi ,\pi )$, the situation is dramatically different—if the sequence $\{ {e^{i{\lambda _n}t}}\}$ is exact, then its biorthogonal sequence is also exact.References
- B. Ja. Levin, Distribution of zeros of entire functions, American Mathematical Society, Providence, R.I., 1964. MR 0156975
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399
- Robert M. Young, An introduction to nonharmonic Fourier series, Pure and Applied Mathematics, vol. 93, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 591684
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 537-540
- MSC: Primary 42C30; Secondary 30D99
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627686-9
- MathSciNet review: 627686